Skip to main content
Log in

Step-up multiple regression model to compute Chlorophyll a in the coastal waters off Cochin, southwest coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The interaction effects of abiotic processes in the production of phytoplankton in a coastal marine region off Cochin are evaluated using multiple regression models. The study shows that chlorophyll production is not limited by nutrients, but their physiological regulations (responses to nutrients, pH, temperature and salinity) are mainly responsible for the increased biological production. The model explaining 77% of variability for chlorophyll a production is indicative of preconditioning of the coastal waters. The phytoplankton production is found to be sensitive to the environment, which varies seasonally. Further, the study suggests that supply of organic matter and grazing of zooplankton (not included) would improve the model efficiency. Despite this, the good agreement in the computed and measured chlorophyll a values shows that step-up multiple regression model is a useful tool to understand the influence of environmental variables on the production of phytoplankton in these coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balachandran, K. K. (2001). Chemical oceanographic studies of the coastal waters of Cochin (248 pp.). PhD Thesis. Cochin University of Science & Technology, Cochin, Kerala, India.

  • Balachandran, K. K. (2004). Does subterranean flow initiate mud banks off the southwest coast of India? Estuarine, Coastal and Shelf Science, 59, 589–598.

    Article  Google Scholar 

  • Balachandran, K. K., Lalu Raj, C. M., Nair, M., Joseph, T., Sheeba, P., & Venugopal, P. (2005). Heavy metal accumulation in a flow restricted, tropical estuary. Estuarine, Coastal and Shelf Science, 65, 361–370.

    Article  CAS  Google Scholar 

  • Chavez, F. P. (1989). Size distribution of phytoplankton in the Central and Eastern Tropical Pacific. Global Biogeochemical Cycles, 3, 27–35.

    Article  Google Scholar 

  • Cole, B. E., & Cloern, J. E. (1987). An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecological Progress Series, 36, 299–365.

    Article  Google Scholar 

  • Evonne, P. Y., Tang, & Petes, R. H. (1995). The allometry of algal respiration. Journal of Plankton Research, 17(2), 303–315.

    Article  Google Scholar 

  • Fisher, S. G., & Gray, L. J. (1983). Secondary production and organic matter processing by collector macro invertebrates in a discrete stream. Ecology, 64(5), 1217–1224.

    Article  Google Scholar 

  • Gopalan, U. K., Vengayil, D. T., Varma, U. P., & Kutty, K. M. (1988). The shrinking backwaters of Kerala. Journal of Marine Biological Association of India, 25(1 & 2), 131–141.

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Methods of seawater analysis (384 pp.). Weinheim: VCH.

    Google Scholar 

  • Jayalakshmy, K. V. (1998). Biometric studies on trophic level relationships in the Indian Ocean (267 pp.). PhD Thesis. Cochin University of Science & Technology, Cochin, Kerala, India.

  • Kautsky, L. (1981). Primary production and uptake kinetics of ammonium and phosphate by Enteromapha Conpressa in an ammonium sulphate industry outlet area. Aquatic Botany, 12(1), 23–40.

    Google Scholar 

  • Kiefer, D. A., & Atkinson, C.A. (1984). Cycling of nitrogen by plankton – A hypothetical description based upon efficiency of energy conversion. Journal of Marine Research, 42(3), 655–675.

    CAS  Google Scholar 

  • Lau, S. S. S., & Lane, S. N. (2002). Biological and chemical factors influencing shallow lake eutrophication: A long-term study. The Science of the Total Environment, 288(3), 167–181.

    Article  CAS  Google Scholar 

  • Legendre, L., & Le-Fevre, J. (1989). Hydrodynamical singularities as controls of recycled versus export production in oceans. In W. H Berger, V. S. Smetacek & G. Wefer (Eds.), Productivity of the oceans: present and past (pp.49–63). Chichester: Wiley.

    Google Scholar 

  • Lohrenz, S. E., Dagg, M. J., & Whitledge, T. C. (1990). Enhanced primary production at the plume/oceanic interface of the Mississippi River. Continental Shelf Research, 10, 639–664.

    Article  Google Scholar 

  • Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology. New York: Wiley.

    Google Scholar 

  • Malone, T. C. (1980). Size-fractionated primary productivity of marine phytoplankton. In P. G. Falkowski (Ed.), Primary productivity in the sea (p. 319). New York: Plenum.

    Google Scholar 

  • Mathew, J., Mytheenkhan, B., & Kurian, N. P.(1995). Mudbanks of the southwest coast of India. II. Wave–mud interactions. Journal of Coastal Research, 11(1), 179–187.

    Google Scholar 

  • Momen, B., Eichler, L. W., Boylen, C. W., & Zehr, J. P. (1996). Application of multivariate statistics in detecting temporal and spatial patterns of water chemistry in Lake George, New York. Ecological Modelling, 91, 183–192.

    Article  CAS  Google Scholar 

  • Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V. S., D’ Souza, W., et al. (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature, 408, 346–349.

    Article  CAS  Google Scholar 

  • Pedersen, G., Tamde, K. S., & Nilssen, E. M. (1995). Temporal and regional variation in the copepod community in the Central Barents Sea during spring and early summer. Journal of Plankton Research, 7(2), 263–282.

    Article  Google Scholar 

  • Platt, T. (1986). Primary production of the ocean water column as a function of surface light intensity – Algorithms for remote sensing. Deep-Sea Research, 31, 1–11.

    Google Scholar 

  • Platt, T., Subba Rao, D. V., & Irwin, B. (1983). Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 301, 702–704.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.

    Google Scholar 

  • Robinson, J. D., Mann, K. H., & Novitsky, J. A. (1982). Conversion of the particulate fraction of seaweed detritus to bacterial biomass. Limnology and Oceanography, 127(6), 1072–1079.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical Methods (6th ed.) (544 pp.). New Delhi: Oxford and IBH.

    Google Scholar 

  • Srinivas, K. (2000). Seasonal and interannual variability of sea level and associated surface meteorological parameters at Cochin. PhD Thesis. Cochin University of Science and Technology, Cochin, Kerala, India.

  • Sylas, E. G. (1984). Mudbanks of Kerala–Karnataka – Need for an integrated study: Mudbanks of Kerala Coast. Central Marine Fisheries Research Institute Bulletin, 31, 1–74.

    Google Scholar 

  • Ter Braak, C. J. F. (1990). Update notes: CANOCO version 3.10. Wageningen, The Netherlands: Agricultural mathematics group.

  • UNESCO (1966). Monograph on oceanographic methodology. I. Determination of photosynthetic pigments in seawater. Paris: UNESCO.

    Google Scholar 

  • Varma, P. U., & Kurup, P. G. (1969). Formation of the Chakara (mudbank) on Kerala coast. Current Science, 38(23), 559–560.

    Google Scholar 

  • Weyhenmeyer, G. A., Blenckner, T., & Pettersson, K. (1999). Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography, 47, 1788–1792.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Balachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, K.K., Jayalakshmy, K.V., Laluraj, C.M. et al. Step-up multiple regression model to compute Chlorophyll a in the coastal waters off Cochin, southwest coast of India. Environ Monit Assess 139, 217–226 (2008). https://doi.org/10.1007/s10661-007-9829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9829-5

Keywords

Navigation