Skip to main content
Log in

A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A new semi-smooth Newton multigrid algorithm is proposed for solving the discretized first order necessary optimality systems that characterizing the optimal solutions of a class of two dimensional semi-linear parabolic PDE optimal control problems with control constraints. A new computational scheme (leapfrog scheme) in time associated with the standard five-point stencil in space is established to achieve the second-order finite difference discretization. The convergence (or unconditional stability) of the proposed scheme is proved when assuming time-periodic solutions. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations and the optimal linear complexity of computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbeloos, D., Diehl, M., Hinze, M., Vandewalle, S.: Nested multigrid methods for time-periodic, parabolic optimal control problems. Comput. Vis. Sci. 14(1), 27–38 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apel, T., Flaig, T.G.: Crank-Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50(3), 1484–1512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2006)

    MATH  Google Scholar 

  4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borzì, A.: Multigrid methods for parabolic distributed optimal control problems. J. Comput. Appl. Math. 157(2), 365–382 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borzì, A.: Space-time multigrid methods for solving unsteady optimal control problems. Real-time PDE-constrained optimization. Computational Science and Engineering, pp. 97–113. SIAM, Philadelphia (2007)

    Chapter  Google Scholar 

  8. Borzì, A.: Smoothers for control- and state-constrained optimal control problems. Comput. Vis. Sci. 11(1), 59–66 (2008)

    Article  MathSciNet  Google Scholar 

  9. Borzì, A., González Andrade, S.: Multigrid solution of a Lavrentiev-regularized state-constrained parabolic control problem. Numer. Math. Theory Methods Appl. 5(1), 1–18 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Borzì, A., Griesse, R.: Experiences with a space-time multigrid method for the optimal control of a chemical turbulence model. Internat. J. Numer. Methods Fluids 47(8–9), 879–885 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borzì, A., Griesse, R.: Distributed optimal control of lambda-omega systems. J. Numer. Math. 14(1), 17–40 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Borzí, A., Kunisch, K.: A multigrid scheme for elliptic constrained optimal control problems. Comput. Optim. Appl. 31, 309–333 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Borzì, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–395 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, Philadelphia, PA (2012)

    MATH  Google Scholar 

  15. Borzì, A., von Winckel, G.: Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31(3), 2172–2192 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brabazon, K., Hubbard, M., Jimack, P.: Nonlinear multigrid methods for second order differential operators with nonlinear diffusion coefficient. Comput. Math. Appl. 68(12), 1619–1634 (2014). doi:10.1016/j.camwa.2014.11.002. (to appear, 2014)

    Article  MathSciNet  Google Scholar 

  17. Brandt, A.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Gesellschaft für Mathematik und Datenverarbeitung mbH, St. Augustin (1984)

    MATH  Google Scholar 

  18. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  19. Brown, P.N., Vassilevski, P.S., Woodward, C.S.: On mesh-independent convergence of an inexact Newton-multigrid algorithm. SIAM J. Sci. Comput. 25(2), 570–590 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chrysafinos, K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE’s. M2AN. Math. Model. Numer. Anal. 44(1), 189–206 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser/Springer, New York (2012)

    Book  MATH  Google Scholar 

  23. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. González Andrade, S., Borzì, A.: Multigrid second-order accurate solution of parabolic control-constrained problems. Comput. Optim. Appl. 51(2), 835–866 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hackbusch, W.: On the fast solving of parabolic boundary control problems. SIAM J. Control Optim. 17(2), 231–244 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hackbusch, W.: Numerical solution of linear and nonlinear parabolic control problems. Optimization and optimal control (Proceedings of the Conference held at the Mathematical Research Institute. Oberwolfach, 1980). Lecture Notes in Control and Information Science, pp. 179–185. Springer, Berlin (1981)

    Google Scholar 

  27. Hackbusch, W.: Elliptic differential equations: theory and numerical treatment, english edn. Springer-Verlag, Berlin (2010)

    Google Scholar 

  28. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  29. ller, M., Ulbrich, M.: A mesh-independence result for semismooth Newton methods. Math. Program. 101(1, Ser. B), 151–184 (2004)

    MathSciNet  Google Scholar 

  30. Hinze, M., Köster, M., Turek, S.: A space-time multigrid method for optimal flow control. Constrained optimization and optimal control for partial differential equations, International Series of Numerical Mathematics, pp. 147–170. Springer, Basel (2012)

    Chapter  Google Scholar 

  31. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New York (2009)

    MATH  Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  33. Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  35. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia, PA, USA (2007)

    Book  Google Scholar 

  36. Li, B., Liu, J., Xiao, M.: A second-order leapfrog multigrid method for the numerical solution of parabolic optimal control problems (preprint, 2014)

  37. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  38. Liu, J., Xiao, M.: A new semi-smooth newton multigrid method for control-constrained semi-linear elliptic pde problems. J. Global Optim. (to appear, 2014). doi:10.1007/s10898-014-0206-y

  39. Liu, W., Ma, H., Tang, T., Yan, N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42(3), 1032–1061 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Meidner, D., Vexler, B.: A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  42. Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Marcel Dekker Inc., New York (1994)

    MATH  Google Scholar 

  43. Neitzel, I., Prüfert, U., Slawig, T.: A smooth regularization of the projection formula for constrained parabolic optimal control problems. Numer. Funct. Anal. Optim. 32(12), 1283–1315 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  45. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA (2003)

    Book  MATH  Google Scholar 

  46. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia, PA (2004)

    Book  MATH  Google Scholar 

  47. Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, Providence, RI (2010)

    Book  MATH  Google Scholar 

  49. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press Inc., San Diego, CA (2001)

    MATH  Google Scholar 

  50. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization problems in function spaces. SIAM, Philadelphia, PA (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous reviewers and Professor William W. Hager for their helpful comments and constructive suggestions that greatly contributed to improving the original version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Xiao.

Additional information

This work was supported in part by Dissertation Research Assistantship from Southern Illinois Univeristy and in part by the NSF1021203, NSF1419028 of the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xiao, M. A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems. Comput Optim Appl 63, 69–95 (2016). https://doi.org/10.1007/s10589-015-9759-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9759-z

Keywords

Navigation