Skip to main content
Log in

The diversification and activity of hAT transposons in Musa genomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Sequencing of plant genomes often identified the hAT superfamily as the largest group of DNA transposons. Nevertheless, detailed information on the diversity, abundance and chromosomal localization of plant hAT families are rare. By in silico analyses of the reference genome assembly and bacterial artificial chromosome (BAC) sequences, respectively, we performed the classification and molecular characterization of hAT transposon families in Musa acuminata. Musa hAT transposons are organized in three families designated MuhAT I, MuhAT II and MuhAT III. In total, 70 complete autonomous elements of the MuhAT I and MuhAT II families were detected, while no autonomous MuhAT III transposons were found. Based on the terminal inverted repeat (TIR)-specific sequence information of the autonomous transposons, 1722 MuhAT I- and MuhAT II-specific miniature inverted-repeat transposable elements (MuhMITEs) were identified. Autonomous MuhAT I and MuhAT II elements are only moderately abundant in the sections of the genus Musa, while the corresponding MITEs exhibit an amplification in Musa genomes. By fluorescent in situ hybridization (FISH), autonomous MuhAT transposons as well as MuhMITEs were localized in subtelomeric, most likely gene-rich regions of M. acuminata chromosomes. A comparison of homoeologous regions of M. acuminata and Musa balbisiana BACs revealed the species-specific mobility of MuhMITEs. In particular, the activity of MuhMITEs II showing transduplications of genomic sequences might indicate the presence of active MuhAT transposons, thus suggesting a potential role of MuhMITEs as modulators of genome evolution of Musa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alix K, Heslop-Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909

    Article  CAS  PubMed  Google Scholar 

  • Benjak A, Forneck A, Casacuberta JM (2008) Genome-wide analysis of the “cut-and-paste” transposons of grapevine. PLoS ONE 3:e3107

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjak A, Boué S, Forneck A, Casacuberta JM (2009) Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol Evol 20:75–84

    Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capy P, Bazin C, Higuet D, Langin T (1998) Dynamics and evolution of transposable elements. Springer, Austin

    Google Scholar 

  • Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M (2010) Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 120:491–508

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans W (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics 14:683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Freitas Ortiz M, Lorenzatto KR, Corrêa BR, Loreto EL (2010) hAT transposable elements and their derivatives: an analysis in the 12 Drosophila genomes. Genetica 138:649–655

    Article  PubMed  Google Scholar 

  • Desel C (2002) Chromosomale Lokalisierung von repetitiven und unikalen DNA-Sequenzen durch Fluoreszenz- in situ- Hybridisierung in der Genomanalyse bei Beta-Arten. Dissertation, University of Kiel

  • Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, Garsmeur O, Dereeper A, Hamelin C, Argout X, Dufayard J-F, Lengelle J, Baurens F-C, Cenci A, Pitollat B, D’Hont A, Ruiz M, Rouard M, Bocs S (2013) The Banana Genome Hub. Database. doi:10.1093/database/bat035

    PubMed Central  PubMed  Google Scholar 

  • Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157

    Article  CAS  PubMed  Google Scholar 

  • Gambin T, Startek M, Walczak K, Paszek J, Grzebelus D, Gambin A (2013) TIRfinder: a web tool for mining class II transposons carrying terminal inverted repeats. Evol Bioinform Online 9:17–27

    Article  PubMed Central  Google Scholar 

  • Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 62:809–813

    Article  Google Scholar 

  • Hartings H, Rossi V, Lazzaroni N, Thompson RD, Salamini F, Motto M (1991) Nucleotide sequence of the Bg transposable element of Zea mays L. Maydica 36:355–359

    Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z (2009) Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 93:274–281

    Article  CAS  PubMed  Google Scholar 

  • Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, Sakurai T, Akiyama K, Kamiya A, Ito T, Shinozaki K (2004) A collection of 11 800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37:897–905

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Koblízková A, Neumann P (2005) Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome 48:831–839

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T (2006) Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res 14:831–844

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2012) Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Mol Biol 78:393–405

    Article  CAS  PubMed  Google Scholar 

  • Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vázquez S, Ning J, Meyers BC (2005) hATpin, a family of MITE-like hAT mobile elements conserved in diverse plant species that forms highly stable secondary structures. Plant Mol Biol 58:869–886

    Article  PubMed  Google Scholar 

  • Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J (2014) Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE 9:e98918

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in-situ hybridization. BIOS Scientific Publishers, Oxford, p 60

    Google Scholar 

  • Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP (2010) Genome-wide distribution of transposed dissociation elements in maize. Plant Cell 22:1667–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Dooner HK (2005) Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17:375–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Weil CF, Wessler SR (2006) A rice Tc1/mariner-like element transposes in yeast. Plant Cell 18:2469–2478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci U S A 101:5589–5594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Nadin Fliegner and Ines Walter for the excellent technical assistance. We thank the DAAD-British Council ARC Academic Research Collaboration project for support of the collaboration. We thank the Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), Montpellier (France), and the Musa Genome Resource Centre (MGRC) at the Institute of Experimental Botany (IEB), Olomouc (Czech Republic) for the production, storage and distribution of Musa DNA samples used here. We thank the TU Dresden Center for Information Services and High Performance Computing (ZIH) for the computer time allocations.

Conflict of interest

The authors Gerhard Menzel, Tony Heitkam, Kathrin M. Seibt, Faisal Nouroz, Manuela Müller-Stoermer, John S. Heslop-Harrison and Thomas Schmidt declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt.

Additional information

Responsible Editor: Hans de Jong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 226 kb)

ESM 2

(PPT 911 kb)

ESM 3

(GFF 229 kb)

ESM 4

(DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzel, G., Heitkam, T., Seibt, K.M. et al. The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 22, 559–571 (2014). https://doi.org/10.1007/s10577-014-9445-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9445-5

Keywords

Navigation