Skip to main content
Log in

Glycerol-treated nuclear suspensions—an efficient preservation method for flow cytometric analysis of plant samples

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Flow cytometry (FCM) has been widely used in plant science to determine the amount of nuclear DNA, either in absolute units or in relative terms, as an indicator of ploidy. The requirement for fresh material in some applications, however, limits the value of FCM in field research, including plant biosystematics, ecology and population biology. Dried plant samples have proven to be a suitable alternative in some cases (large-scale ploidy screening) although tissue dehydration is often associated with a decrease in the quality of FCM analysis. The present study tested, using time-scale laboratory and in situ field experiments, the applicability of glycerol-treated nuclear suspension for DNA flow cytometry. We demonstrate that plant nuclei preserved in ice-cold buffer + glycerol solution remain intact for at least a few weeks and provide estimates of nuclear DNA content that are highly comparable and of similar quality to those obtained from fresh tissue. The protocol is compatible with both DAPI and propidium iodide staining, and allows not only the determination of ploidy level but also genome size in absolute units. Despite its higher laboriousness, glycerol-preserved nuclei apparently represent the most reliable way of sample preservation for genome size research. We assume that the protocol will provide a vital alternative to other preservation methods, especially when stringent criteria on the quality of FCM analysis are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

DAPI:

4',6-diamidino-2-phenylindole

FCM:

Flow cytometry/flow cytometric

PI:

Propidium iodide

SD:

Standard deviation

References

  • Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19:825–842

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M (2009) Package ‘lme4’—linear mixed-effects models using S4 classes. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Bendiksby M, Tribsch A, Borgen L, Trávníček P, Brysting AK (2011) Allopolyploid origins of the Galeopsis tetraploids—revisiting Müntzing’s classical textbook example using molecular tools. New Phytol 191:1150–1167

    Article  PubMed  CAS  Google Scholar 

  • Chiatante D, Brusa P, Levi M, Sgorbati S, Sparvoli E (1990) A simple protocol to purify fresh nuclei from milligram amounts of meristematic pea root tissue for biochemical and flow cytometry applications. Physiol Plantarum 78:501–506

    Article  Google Scholar 

  • Cires E, Cuesta C, Peredo EL, Revilla MA, Prieto JAF (2009) Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the northwest of Spain. Plant Syst Evol 281:193–208

    Article  Google Scholar 

  • Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can J Bot 82:185–197

    Article  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007a) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim

    Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007b) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 67–101

    Google Scholar 

  • Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58

    Article  PubMed  Google Scholar 

  • Hopping M (1993) Preparation and preservation of nuclei from plant tissues for quantitative DNA analysis by flow cytometry. N Z J Bot 31:391–401

    Article  Google Scholar 

  • Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, Niessner S, Nigl T, Schneeweiss GM, Kubešová M, Rauchová J, Suda J, Schönswetter P (2009) Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309–319

    PubMed  Google Scholar 

  • Košnar J, Kolář F (2009) A taxonomic study of selected European taxa of the Tortula muralis (Pottiaceae, Musci) complex: variation in morphology and ploidy level. Preslia 81:399–421

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21

    Google Scholar 

  • Nsabimana A, Van Staden J (2006) Ploidy investigation of bananas (Musa spp.) from the National Banana Germplasm Collection at Rubona-Rwanda by flow cytometry. S Afr J Bot 72:302–305

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology 33. Academic, San Diego, pp 105–110

    Google Scholar 

  • Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schönswetter P, Lachmayer M, Lettner C, Prehsler D, Rechnitzer S, Reich DS, Sonnleitner M, Wagner I, Hülber I, Schneeweiss GM, Trávníček P, Suda J (2007a) Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J Plant Res 120:721–725

    Article  PubMed  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007b) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phyl Evol 42:92–103

    Article  Google Scholar 

  • Shapiro H (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Book  Google Scholar 

  • Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytom Part A 64A:72–79

    Article  Google Scholar 

  • Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca, Poaceae) measured in fresh and herbarium material. Folia Geobot 41:417–432

    Article  Google Scholar 

  • Šmarda P, Müller J, Vrána J, Kočí K (2005) Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). Biologia (Bratislava) 60:25–36

    Google Scholar 

  • StatSoft, Inc. (2008) STATISTICA (data analysis software system), version 8.0

  • Suda J, Leitch IJ (2010) The quest for suitable reference standards in genome size research. Cytom Part A 77A:717–720

    Article  CAS  Google Scholar 

  • Suda J, Trávníček P (2006a) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr Protoc Cytom 38:7.30.1–7.30.14

    Google Scholar 

  • Suda J, Trávníček P (2006b) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A 69A:273–280

    Article  Google Scholar 

  • Suda J, Kyncl T, Jarolímová V (2005) Nuclear DNA amounts in Macaronesian angiosperms: forty percent of Canarian endemic flora completed. Plant Syst Evol 252:215–238

    Article  CAS  Google Scholar 

  • Suda J, Kron P, Husband BC, Trávníček P (2007a) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 103–130

    Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss G, Trávníček P, Schönswetter P (2007b) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    Article  PubMed  Google Scholar 

  • Volkova PA, Trávníček P, Brochmann C (2010) Evolutionary dynamics across discontinuous freshwater systems: rapid expansions and repeated allopolyploid origins in the Palearctic white water-lilies (Nymphaea). Taxon 59:483–494

    Google Scholar 

Download references

Acknowledgements

Jana Krejčíková and Pavel Trávníček helped us with the flow cytometric analyses and Jan Lepš, Kateřina Štajerová and Kenneth Molem kindly assisted with the collection and determination of the tropical species. The project was supported by projects 206/08/H049 and P506/10/0704 from the Czech Science Foundation. JT was supported by project 138/2010/P. Additional support was provided by the Academy of Science of the Czech Republic within the Institutional Research Programme AV0Z60050516 and the Ministry of Education, Youth and Sports of the Czech Republic (projects MSM0021620828 and MSM6007665801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Kolář.

Additional information

Responsible Editor: Hans de Jong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 15.7 kb)

Fig. S2

(PDF 28 kb)

Fig. S3

(PDF 31 kb)

Supplementary file S4

(PDF 99.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolář, F., Lučanová, M., Těšitel, J. et al. Glycerol-treated nuclear suspensions—an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Res 20, 303–315 (2012). https://doi.org/10.1007/s10577-012-9277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9277-0

Keywords

Navigation