Skip to main content
Log in

Relativistic Celestial Mechanics on the verge of its 100 year anniversary

(Brouwer Award lecture)

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

As we are now approaching 2015, both the General Relativity Theory (GRT) and the relativistic Celestial Mechanics based on it will soon arrive at their 100 year anniversaries. There is no border between Newtonian and relativistic Celestial Mechanics. The five-decade period of intensive development of Celestial Mechanics in the second half of the 20th century left many interesting techniques and problems uncompleted. This lecture reviews some problems of Newtonian and relativistic Celestial Mechanics worthy of further investigation. Concerning Newtonian mechanics, these problems include general solution of the three-body problem by means of the series of polynomials, construction of the short-term and long-term theories of motion using the fast converging elliptic function expansions, and representation of the rotation of the planets in the form compatible with the General Planetary Theory reducing the problem to the combined secular system for translatory motion and rotation. Relativistic problems considered here include the determination of the main relativistic effects in the motion of a satellite, e.g. the Moon, and in the rotation of the primary planet using the Newtonian theories of motion and rotation combined with the relativistic transformation of the reference systems, the use of the linearized weak-field GRT metric as a basis of relativistic Celestial Mechanics in the post-Newtonian approximation, and the motion of the Solar System bodies at the cosmological background in the framework of the basic cosmological models. The exposition of the chosen relativistic problems is preceded by reminding the basic features of relativistic Celestial Mechanics with discussing some present tendencies concerning the Parametrized Post-Newtonian formalism, International Astronomical Union resolutions, and standardization of the GRT routines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belorizky D.: Recherches sur l’application pratique des solutions générales du problème des trois corps. J. des observateurs 16, 109, 149, 189 (1933)

    Google Scholar 

  • Bretagnon P., Brumberg V.A.: On transformation between international celestial and terrestrial reference systems. Astron. Astrophys. 408, 387–400 (2003)

    Article  ADS  Google Scholar 

  • Brumberg, E.: Perturbed two-body motion with elliptic functions. In: Kinoshita, H., Nakai, N. (eds.) Proceedings of 25th Symposium on Celestial Mechanics, pp. 139–155. Tokyo (1992)

  • Brumberg V.A.: Series of polynomials in the problem of three bodies (in Russian). Bull. ITA 9(4), 234–256 (1963)

    MathSciNet  Google Scholar 

  • Brumberg, V.A.: Relativistic Celestial Mechanics. Moscow (1972)

  • Brumberg V.A.: Essential Relativistic Celestial Mechanics. Hilger, Bristol (1991)

    MATH  Google Scholar 

  • Brumberg, V.A.: Relativistic aspects of reference systems and time scales. In: Bergeron, J. (ed.) Highlights of Astronomy vol. 9, pp. 133–139 (1992)

  • Brumberg V.A.: Analytical Techniques of Celestial Mechanics. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  • Brumberg, V.A.: GRT equations of the Earth’s rotation. In: Notes Sci. et. Tech. du BDL, vol. S057, pp. 1–13. Paris (1997)

  • Brumberg V.A.: On relativistic equations of motion of an earth satellite. Celest. Mech. Dyn. Astron. 88, 209–225 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg V.A.: On derivation of EIH (Einstein–Infeld–Hoffman) equations of motion from the linearized metric of general relativity theory. Celest. Mech. Dyn. Astron. 99(3), 245–252 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg, V.A.: RCMA lectures (12 lectures on Relativity in Celestial Mechanics and Astrometry). http://www.imcce.fr (academics/courses of astronomy) (2008a)

  • Brumberg, V.A.: Some uncompleted problems of Newtonian and relativistic Celestial Mechanics. In: Notes Sci. et. Tech. d’IMCCE, vol. S093. Paris (2008b)

  • Brumberg V.A., Brumberg E.V.: Celestial Dynamics at High Eccentricities. Gordon and Breach, London (1999)

    MATH  Google Scholar 

  • Brumberg V.A., Brumberg E.V.: Elliptic anomaly in constructing long-term and short-term dynamical theories. Celest. Mech. Dyn. Astron. 80, 159–166 (2001)

    Article  MATH  ADS  Google Scholar 

  • Brumberg V.A., Groten E.: IAU resolutions on reference systems and time scales in practice. Astron. Astrophys. 367, 1070–1077 (2001)

    Article  ADS  Google Scholar 

  • Brumberg, V.A., Ivanova, T.V.: On the solution of the secular system of the equations of motion of the moon in trigonometric form. Bull. ITA 15, vol. 424. (in Russian) (1985)

    Google Scholar 

  • Brumberg V.A., Ivanova T.V.: New approach to the earth’s rotation problem consistent with the general planetary theory. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds) Dynamics and Astrometry of Natural and Artificial Celestial Bodies (IAU Colloquium No. 165, Poznan), pp. 301–306. Kluwer, Dordrecht (1997)

    Google Scholar 

  • Brumberg V.A., Ivanova T.V.: Precession/nutation solution consistent with the general planetary theory. Celest. Mech. Dyn. Astron. 97, 189–210 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg, V.A., Simon, J.-L.: Relativistic indirect third-body perturbations in the SMART Earth’s rotation theory. In: Finkelstein, A., Capitaine, N. (eds.) Astrometry, Geodynamics and Solar System Dynamics: From Milliarcseconds to Microarcseconds, pp. 302–313. Journées 2003, St. Petersburg (2003)

  • Brumberg, V.A., Simon, J.-L.: Relativistic extension of the SMART Earth’s rotation theory and the ITRS ↔ GCRS relationship. In: Notes Sci. et Tech. d’IMCCE, vol. S088. Paris (2007)

  • Fock, V.A. Theory of Space, Time and Gravitation (in Russian): Fizmatgiz, Moscow (1955)

  • Gerasimov I.A., Chazov V.V., Rykhlova L.V., Tagaeva D.A.: Construction of the theory of motion for Solar-System bodies based on the universal method for the perturbative function calculation (in Russian). Astron. Vestnik 34, 559–566 (2000)

    Google Scholar 

  • IAU: IAU Information Bull. 88, 28 (Errata: ibid. 89, 4) (2001)

  • Infeld L.: Equations of motion in general relativity theory and the action principle. Rev. Mod. Phys. 29, 398 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Infeld L., Plebanski J.: Motion and Relativity. Pergamon Press, New York (1960)

    MATH  Google Scholar 

  • Jankewicz, Cz., Nowak, L.: Post-post-Newtonian equations of motion for point particles in the general theory of relativity. J. Exp. Theoret. Phys. 98, pp. 837–852. (translated from JETP 125, 963–981) (2004)

    Google Scholar 

  • Järnefelt G.: Das Einkörperproblem in dem sich ausdehnemden Raume. Ann. Acad. Sci. Fennicae, ser. A 45, 3 (1940)

    Google Scholar 

  • Järnefelt G.: Das Einkörperproblem in dem sich ausdehnemden Raume der Einstein-de Sitter’schen Welt. Ann. Acad. Sci. Fennicae, ser. A 45, 12 (1942)

    Google Scholar 

  • Jefferys W.H.: Automated closed form integration of formulas in elliptic motion. Celest. Mech. 3, 390–394 (1971)

    Article  ADS  Google Scholar 

  • Kopeikin S.M., Schäfer G.: Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies. Phys. Rev. D 60, 124002-(1–44) (1999)

    Article  ADS  Google Scholar 

  • Krasinsky G.A.: Earth’s precession-nutation motion: the error analysis of the theories IAU 2000 and IAU 2006 applying the VLBI data of the years 1984–2006. Celest. Mech. Dyn. Astron. 101(4), 325–336 (2008)

    Article  MATH  ADS  Google Scholar 

  • Krasinsky G.A., Brumberg V.A.: Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation. Celest. Mech. Dyn. Astron. 90(3–4), 267–288 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Krasinsky G.A., Vasilyev M.V.: Numerical theory of rotation of the deformable Earth with two-layer fluid core. Part 2: fitting to VLBI data. Celest. Mech. Dyn. Astron. 96(3–4), 219–237 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Laskar J.: Large scale chaos and marginal stability in the solar system. Celest. Mech. Dyn. Astron. 64, 115 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Laskar J., Joutel F., Boudin F.: Orbital, precessional, and inclination quantities for the earth from −20 Myr to + 10 Myr. Astron. Astrophys. 270, 522 (1993)

    ADS  Google Scholar 

  • Lightman A.P., Press W.H., Price R.H., Teukolsky S.A.: Problem Book in Relativity and Gravitation. Princeton, New Jersey (1975)

    MATH  Google Scholar 

  • Mc Vittie G.C.: The mass particle in an expanding universe. MN RAS 93, 325–339 (1933)

    ADS  Google Scholar 

  • Michalska R.: Action principle for the motion of rotating bodies in the general theory of relativity. Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 8, 233 (1960a)

    MATH  MathSciNet  Google Scholar 

  • Michalska R.: The equations of motion of rotating oblate bodies in the general theory of relativity. Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 8, 247 (1960b)

    MATH  MathSciNet  Google Scholar 

  • Nacozy P.: The intermediate anomaly. Celest. Mech. 16, 309–313 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  • Newcomb, S.: The elements of the four inner planets and the fundamental constants of astronomy. Am. Ephemer. Suppl. (1897)

  • Picard É.: Le problème des trois corps a propos des recherches récentes de M. Sundman. Bull. des Sci. Math. (2) 37, 313 (1913)

    Google Scholar 

  • Smart W.M.: Celestial Mechanics. Longmans, London (1953)

    MATH  Google Scholar 

  • Soffel M.H., Brumberg V.A.: Relativistic reference frames including time scales: questions and answers. Celest. Mech. 52(4), 355–373 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Soffel M., Klioner S.A., Petit G., Wolf P., Kopeikin S.M. et al.: The new IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic framework: explanatory supplement. Astron. J. 126(6), 2687–2706 (2003)

    Article  ADS  Google Scholar 

  • Sundman K.F.: Mémoire sur le problème des trois corps. Acta math. 36, 105 (1912)

    Article  MATH  MathSciNet  Google Scholar 

  • Synge J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1960)

    MATH  Google Scholar 

  • Tisserand F.: Traité de Mécanique Céleste, t. 2. Gauthier-Villars, Paris (1891)

    Google Scholar 

  • Zel’manov, A.L., Agakov, V.G.: Elements of the General Relativity Theory. Moscow (in Russian) (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Brumberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumberg, V.A. Relativistic Celestial Mechanics on the verge of its 100 year anniversary. Celest Mech Dyn Astr 106, 209–234 (2010). https://doi.org/10.1007/s10569-009-9237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9237-y

Keywords

Navigation