Skip to main content
Log in

Structural, physiological, and biochemical profiling of tea plantlets under zinc stress

  • Published:
Biologia Plantarum

Abstract

Zinc is the most widespread deficient micronutrient in the tea growing soils of India which affects growth of the plants. In order to investigate the structural, physiological, and biochemical changes under Zn stress (i.e. both deficient and excess supply) of tea [Camellia sinensis (L.) O. Kuntze cv. T-78] plants, we treated young plants with ZnSO4 at 0 (deficiency), 0.3, 3 (optimum), and 30 μM (toxic) concentrations for 8 weeks. Zn deficiency and excess resulted in considerable decrease in shoot and root fresh and dry masses, and transmission electron microscopy (TEM) revealed disorganization of some cellular organelles. Further, Zn-stress decreased net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and content of chlorophylls a and b. On the other hand, content of superoxide anion, malondialdehyde, hydrogen peroxide, and phenols, and electrolyte leakage were elevated in stressed plants. The activities of ascorbate peroxidase, catalase, superoxide dismutase, and peroxidase as well as expression of respective genes were up-regulated under Zn-stress. Nevertheless, antioxidant system as a whole did not afford sufficient protection against oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

E:

transpiration rate

gs :

stomatal conductance

MDA:

malondialdhyde

PN :

net photosynthetic rate

POD:

peroxidase

SOD:

superoxide dismutase

References

  • Allen, S.E., Grimshaw, H.M., Rowland, A.P.: Chemical analysis. — In: Mooren, P.D., Chapman, S.B. (ed.): Methods in Plant Ecology. Pp. 285–344, Blackwell Scientific Publication, Oxford 1986.

    Google Scholar 

  • Bennet, W.F.: Nutrient Deficiencies and Toxicities in Crop Plants. — APS Press, St. Paul 1993.

    Google Scholar 

  • Bray, H.G., Thorpe, W.V.: Analysis of phenolic compounds of interest in metabolism. — Methods Biochem. Anal. 1: 27–52, 1954.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. — New Phytol. 146: 185–205, 2000.

    Article  CAS  Google Scholar 

  • Cakmak, I., Marschner, H.: Enhanced superoxide radical production in roots of zinc-deficient plants. — J. exp. Bot. 39: 1449–1460, 1988.

    Article  Google Scholar 

  • Chance, B., Maehly, A.C.: Assay of catalase and peroxidase. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 764–775, Academic, New York 1955.

    Chapter  Google Scholar 

  • Chandra Mouli, B., Marimuthu, S., Sharma, V.S., Zinc, the master micronutrient for tea. — Int. J. Tea Sci. 8: 91–96, 2012.

    Google Scholar 

  • Choudhury, S., Panda, S.K.: Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. — Water Air Soil Pollut. 167: 73–90, 2005.

    Article  CAS  Google Scholar 

  • Das, A., Das, S., Mondal, T.K.: Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization — Plant mol. Biol. Rep. 30: 1088–1101, 2012

    Article  CAS  Google Scholar 

  • Das, A., Mondal, T.K.: Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis) — Amer. J. Plant Sci. 1: 77–86, 2010.

    Article  CAS  Google Scholar 

  • Davies, K.L., Davies, M.S., Francis, D.: The effects of zinc on cell viability and on mitochondrial structure in contrasting cultivars of Festuca rubra L. A rapid test for zinc tolerance. — Environ. Pollut. 88: 109–113, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Genc, Y., McDonald, G.K., Graham, R.D.: A soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plants. — Aust. J. agr. Res. 53: 409–421, 2002.

    Article  CAS  Google Scholar 

  • Grewal, H.S., Williams, R.: Alfalfa genotypes differ in their ability to tolerate zinc deficiency. — Plant Soil 214: 39–48, 1999.

    Article  CAS  Google Scholar 

  • Hacisalihoglu, G., Hart, J.J., Wang, Y., Cakmak, I., Kochian, L.V.: Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. — Plant Physiol. 131: 595–602, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hajiboland, R., Amirazad, F.: Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. — Plant Soil Environ. 56: 209–217, 2010.

    CAS  Google Scholar 

  • Han, S., Chen, L.S., Jiang, H.X., Smith, B.R., Yang, L.T., Xie, C.Y.: Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. — J. Plant Physiol. 165: 1331–1341, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hedge, J.E., Hofreiter, B.T.: Methods of estimating starch and carbohydrates. — In: Whistler, R.L., Be Miller, J.N. (ed.): Carbohydrate Chemistry. Pp. 17–22. Academic Press, New York 1962.

    Google Scholar 

  • Huiqun, M., Yuchen, R.: [Relationship between zinc and the metabolism of tea plant.] — J. Tea Sci. 7: 35–40, 1987. [In Chinese]

    Google Scholar 

  • Jordan, C.M., DeVay, J.E.: Lysosome disruption associated with hyper-sensitive reaction in the potato-Phytophthora infestens host-parasite interaction. — Physiol. Plant Pathol. 36: 221–236, 1990.

    Article  CAS  Google Scholar 

  • Kim, T., Wetzstein, H.Y.: Cytological and ultrastructural evaluations of zinc deficiency in leaves. — J. amer. Soc. hort. Sci. 128: 171–175, 2003.

    CAS  Google Scholar 

  • Kösesakal, T., Ünal, M.: Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. — I.U.F.S.J. Biol. 68: 113–120, 2009.

    Google Scholar 

  • Küpper, H., Küpper, F., Spiller, M.: Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. — J. exp. Bot. 47: 259–266, 1996.

    Article  Google Scholar 

  • Lichtenthaler, H.K.: Cholorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Luo, Z.B., He, X.J., Chen, L., Tang, L., Gao, S., Chen, F.: Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. — Int. J. agr. Biol. 12: 119–124, 2010.

    CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. — Academic Press, San Diego 1995.

    Google Scholar 

  • Miller, G.L.: Use of dinitrosalicyclic acid reagent for determination of reducing sugars. — Anal. Chem. 31: 426–428, 1972.

    Article  Google Scholar 

  • Mukhopadyay, M., Bantawa, P., Das, A., Sarkar, B., Bera, B., Ghosh, P.D., Mondal, T.K. 2012.: Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea (Camellia sinensis (L.) O. Kuntze) seedling under aluminum stress. — Biometals 25: 1141–54, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubar, Y., Yamaguchi, Y., Shinozaki, K., Shinozaki, K.: Antisense suppression of the proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. — FEBS Lett. 461: 205–210, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa, H., Ohishi, N., Yagi, K.: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. — Anal. Biochem. 95: 351–358, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Padmaja, K., Prasad, D.D.K., Prasad, A.R.K.: Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. — Photosynthetica 24: 399–405, 1990.

    CAS  Google Scholar 

  • Pinton, R., Cakmak, I., Marschner, H.: Effect of zinc deficiency on proton fluxes in plasma membrane-enriched vesicles isolated from bean roots. — J. exp. Bot. 44: 623–630, 1993.

    Article  CAS  Google Scholar 

  • Pinton, R., Cakmak, I., Marschner, H.: Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants. — J. exp. Bot. 45: 45–50, 1994.

    Article  CAS  Google Scholar 

  • Prasad, M.N.V., Strzalka, K.: Impact of heavy metals on photosynthesis. — In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. Pp. 117–138, Springer-Verlag, Berlin 1999.

    Chapter  Google Scholar 

  • Rout, G.R., Das, P.: Effect of metal toxicity on plant growth and metabolism: I. zinc. — Agronomie 23: 3–11, 2003.

    Article  Google Scholar 

  • Sagisaka, S.: The occurrence of peroxide in a perennial plant Populas gelrica. — Plant Physiol. 57: 308–309, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants. — J. exp. Bot. 52: 2115–2126, 2001.

    PubMed  CAS  Google Scholar 

  • Sharma, P.N., Tripathi, A., Bisht, S.S.: Zinc requirement for stomatal opening in cauliflower. — Plant Physiol. 107: 751–756, 1995.

    PubMed  Google Scholar 

  • Siedlecka, A., Krupa, Z.: Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. — Plant Physiol. Biochem. 34: 833–841, 1996.

    CAS  Google Scholar 

  • Singh, M.V.: Micronutrient nutritional problems in soils of India and improvement for human and animal health. — Indian J. Fertil. 5: 11–16, 19–26 and 56, 2009.

    CAS  Google Scholar 

  • Tewari, R.K., Kumar, P., Sharma, P.N.: Morphology and physiology of zinc-stressed mulberry plants. — J. Plant Nutr. Soil Sci. 171: 286–294, 2008.

    Article  CAS  Google Scholar 

  • Upadhyaya, H., Panda, S.K.: Responses of Camellia sinensis to drought and rehydration. — Biol. Plant. 48: 597–600, 2004.

    Article  Google Scholar 

  • Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants. — Plant Cell Environ. 13: 195–206, 1990.

    Article  Google Scholar 

  • Van Assche, F., Ceulemans, R., Clijsters, H.: Zinc mediated effects on leaf CO2 diffusion conductance and net photosynthesis in Phaseolus vulgaris L. — Photosynth. Res. 1: 171–180, 1980.

    Article  Google Scholar 

  • Venkatesan, S., Hemalatha, K.V., Jayaganesh, S.: Zinc toxicity and its influence on nutrient uptake in tea. — Amer. J. Plant Phsiol. 1: 185–192, 2006.

    Article  Google Scholar 

  • Wang, Y.H., Garvin, D.F., Kochian, L.V.: Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross-talk and root/rhizosphere-mediated signals. — Plant Physiol. 130: 1361–1370, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, H.J., Jager, H.J.: Subcellular distribution and chemical form of cadmium in bean plants. — Plant Physiol. 65: 480–482, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Fang, X.: Effect of zinc on carbon and nitrogen metabolism in tea plant (Camellia sinensis L.). — Sci. Agr. Sin. 27: 72–77, 1994.

    CAS  Google Scholar 

  • Yan, J., Cai, Y., Lin, H.: Effect of Zn++ on quality and lipid peroxidation in leaves of tea. — J. Anhui Agr. Sci. 25: 30–32, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Mondal.

Additional information

Acknowledgements: The authors are thankful to late Dr. R S Saha, Scientist, Darjeeling Tea Research Centre, Tea Board, Darjeeling, West Bengal for providing the tea plantlets. The financial assistance from Tea Board, Govt of India is also acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, M., Das, A., Subba, P. et al. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol Plant 57, 474–480 (2013). https://doi.org/10.1007/s10535-012-0300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0300-2

Additional key words

Navigation