Skip to main content
Log in

Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential micronutrient for higher plants; yet, at higher concentrations it is toxic. In order to explore the effect of Zn stress on growth, biochemical, physiological and ultra-structural changes, 1 year old mandarin plants were grown under various Zn concentrations (1, 2, 3, 4, 5, 10 15 and 20 mM) for 14 weeks. The biomass of the plants increased with increasing Zn concentrations and finally declined under excess Zn concentration but the prime increase was observed at 4 and 5 mM Zn. Zn stress reduced the photosynthetic rate, stomatal conductance, and transpiration along with reduction of chlorophyll a, chlorophyll b, and carotenoids content in leaf. Superoxide anion, malondialdehyde, hydrogen peroxide and electrolyte leakage were elevated in Zn stressed plants. The activities of ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) enzymes were increased in both Zn-deficient and Zn-excess plants. Therefore it is suggested that antioxidant defense system did not sufficiently protect the plants under rigorous Zn stress which was also corroborated by the alteration in cell ultrastructure as revealed by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed AHH, Khalil MK, Abd El-Rahman AM, Nadia AMH (2012) Effect of zinc, tryptophan and indole acetic acid on growth, yield and chemical composition of valencia orange trees. J Appl Sci Res 8:901–914

    Google Scholar 

  • Alloway BJ (2004) Zinc in soils and crop nutrition. International Zinc Association, Box-4, B-1150, Brussels, Belgium

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium induced toxicity in Ceratophyllum demersum, a fresh water macrophyte. Plant Physiol Bioch 41:391–397

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2004) Carbonic anhydrase impairment in cadmium-treated Ceratophyllum demersum L. (free floating freshwater macrophyte): toxicity reversal by zinc. J Anal Atom Spectrom 19:52–57

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005a) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Bioch 43:107–116

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005b) Cadmium-zinc interactions in hydroponic system using Ceratophyllum demersum: adaptive plant ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005c) Zinc mediated protection to the conformation of carbonic anhydrase in cadmium exposed Ceratophyllum demersum L. Plant Sci 169:245–254

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Bassi R, Sharma S (1993) Proline accumulation in wheat seedling exposed to zinc and copper. Phytochemistry 33:1339–1342

    Article  CAS  Google Scholar 

  • Bates LS, Waldeen RP, Teare ID (1973) Rapid estimation of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Candan N, Tarhan L (2003) Changes in chlorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turk J Chem 27:21–30

    CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidise. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 764–775

    Google Scholar 

  • Chen XY, He YF, Luo YM, Yu YL, Lõn Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  PubMed  CAS  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  PubMed  CAS  Google Scholar 

  • Chutia M, Deka Bhuyan P, Pathak MG, Sarma TC, Boruah P (2009) Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT - Food Sci Technol 42:777–780

    Article  CAS  Google Scholar 

  • Del-Rio LA, Sevilla F, Sandalio L, Palma J (1991) Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Rad Res Commun 12:819–827

    Article  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free-floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Hajiboland R, Amirazad F (2010) Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ 56:209–217

    CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplast. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Methods of estimating starch and carbohydrates. In: Whistler RL, Be Miller JN (eds) Carbohydrate chemistry. Academic, New York, pp 17–22

    Google Scholar 

  • Jordan CM, DeVay JE (1990) Lysosome disruption associated with hyper-sensitive reaction in the potato-Phytophthora infestens host-parasite interaction. Physiol Plant Pathol 36:221–236

    Article  CAS  Google Scholar 

  • Kim T, Wetzstein HY (2003) Cytological and ultrastructural evaluations of zinc deficiency in leaves. J Am Soc Hort Sci 128:171–175

    CAS  Google Scholar 

  • Kochian LV (1993) Zinc absorption from hydroponic solution by plant roots. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 45–57

    Chapter  Google Scholar 

  • Kösesakal T, Yüzbasioğlu E, Kaplan E, Baris Ç, Yüzbasioğlu S, Belivermis M, Cevahiröz G, Ünal M (2011) Uptake, accumulation and some biochemical responses in Raphanus sativus L. to zinc stress. Afr J Biotechnol 10:5993–6000

    Google Scholar 

  • Lavine A, Tenhaken R, Dixon R, Lamb C (1994) Hydrogen peroxide from the oxidative burst orchestratos the plant hypersensitive disease resistance response. Cell 79:583–595

    Article  Google Scholar 

  • Li C, Zheng Y, Zhou J, Xu J, Ni D (2011) Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine. Biol Plant 55:563–566

    Article  CAS  Google Scholar 

  • Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12:119–124

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee SP, Choudhari MA (1983) Implication of water stress induced changes in the levels of endogenous ascorbic acid & hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Mondal TK (2014) The physio-chemical responses of Camellia plants to abiotic stresses. J Plant Sci Res 1(1):105

    Google Scholar 

  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh PD, Mondal TK (2013a) Structural, physiological and biochemical profiling of tea plants (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biol Plant 57:474–480

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Ghosh PD, Mondal TK (2013b) Effect of boron deficiency on photosynthesis and antioxidant responses of young tea (Camellia sinensis (L.) O. Kuntze) plants. Russ J Plant Physiol 60:633–639

    Article  CAS  Google Scholar 

  • Mukhopadyay M, Bantawa P, Das A, Sarkar B, Bera B, Ghosh PD, Mondal TK (2012) Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea (Camellia sinensis (L.) O. Kuntze) seedling under aluminum stress. Biometals 25:1141–1154

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Ozdener Y, Aydin BK (2010) The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol Plant 32:469–476

    Article  CAS  Google Scholar 

  • Pal D, Malik SK, Kumar S, Choudhary R, Sharma KC, Chaudhury R (2013) Genetic variability and relationship studies of mandarin (Citrus reticulata Blanco) using morphological and molecular markers. Agric Res 2:236–245

    Article  CAS  Google Scholar 

  • Prasad KVSK, Paradha Saradhi P, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Env Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  • Radić S, Babić M, Skobič D, Rojec V, Pevalek-Kozlina B (2009) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2009.10.014

    PubMed  Google Scholar 

  • Rivas F, Gravina A, Agusti M (2007) Girdling effects on fruit set and quantum yield efficiency of PS-II in two citrus cultivars. Tree Physiol 27:527–535

    Article  PubMed  CAS  Google Scholar 

  • Sagardoy R, Morales F, López-Millán AF, Abadia A, Abadia J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350

    Article  PubMed  CAS  Google Scholar 

  • Sagardoy R, Vazquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbo M, Flexas J, Abadia J, Morales F (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158

    Article  PubMed  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant Populas gelrica. Plant Physiol 57:308–309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sajid M, Rab A, Ali N, Arif M, Ferguson L, Ahmed M (2010) Effect of foliar application of Zn and B on fruit production and physiological disorders in sweet orange cv. Blood orange. Sarhad J Agric 26:355–360

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sharma PN, Tripathi A, Bisht SS (1995) Zinc requirement for stomatal opening in cauliflower. Plant Physiol 107:751–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh Y, Malik CP (2011) Phenols and their antioxidant activity in Brassica juncea seedlings growing under HgCl2 stress. J Microb Biotechnol Res 1:124–130

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  PubMed  CAS  Google Scholar 

  • Srivastava AK (2013) Nutrient deficiency symptomology in citrus: an effective diagnostic tool or just an aid for postmortem analysis. Agric Adv 2:177–194

    Google Scholar 

  • Srivastava AK, Singh S (2005) Zinc nutrition, a global concern for sustainable citrus production. J Sustain Agric 25:5–42

    Article  Google Scholar 

  • Steel RGD, Torrie JH (1984) Principles and procedures of statistics, 2nd edn. MC Graw Hill Book Co, Singapore, pp 172–177

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Swietlik D (1989) Zinc stress on citrus. J Rio Grande Val Hort Soc 42:87–95

    CAS  Google Scholar 

  • Swietlik D (2002) Zinc nutrition of fruit crops. Hort Technol 12:45–50

    CAS  Google Scholar 

  • Tariq M, Sarif M, Shah Z, Khan R (2007) Effect of foliar application of micronutrients on the yield and quality of sweet orange (Citrus sinensis L.). Pak J Biol Sci 10:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2009) Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiol 30:68–77

    Article  PubMed  Google Scholar 

  • Thompson JE, Ledge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    Article  CAS  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochem-US 29:5647–5659

    Article  CAS  Google Scholar 

  • Vassilev A, Perez-Sanz A, Cuypers A, Vangronsveld J (2007) Tolerance of two hydroponically grown Salix genotypes to excess Zn. J Plant Nutr 30:1472–1482

    Article  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and deference mechanisms in primary leaves of Phaseolus vulgaris. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful Mr. Kamal Das for his technical help to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subba, P., Mukhopadhyay, M., Mahato, S.K. et al. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol Mol Biol Plants 20, 461–473 (2014). https://doi.org/10.1007/s12298-014-0254-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-014-0254-2

Keywords

Navigation