Skip to main content

Advertisement

Log in

Skeletal muscle cells possess a ‘memory’ of acute early life TNF-α exposure: role of epigenetic adaptation

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330–337, 2000); Foulstone et al. (J Cell Physiol 189(2):207–215, 2001); Foulstone et al. (Exp Cell Res 294(1):223–235, 2004); Stewart et al. (J Cell Physiol 198(2):237–247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61–73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239–253, 2008); Sharples et al. (J Cell Physiol 225(1):240–250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400–418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that received an early plus late lifespan dose of TNF-α exhibited reduced morphological (myotube number) and biochemical (creatine kinase activity) differentiation vs. control cells that underwent the same number of proliferative divisions but only a later life encounter with TNF-α. This suggested that muscle cells had a morphological memory of the acute early lifespan TNF-α encounter. Importantly, methylation of myoD CpG islands were increased in the early TNF-α cells, 30 population doublings later, suggesting that even after an acute encounter with TNF-α, the cells have the capability of retaining elevated methylation for at least 30 cellular divisions. Despite these fascinating findings, there were no further increases in myoD methylation or changes in its gene expression when these cells were exposed to a later TNF-α dose suggesting that this was not directly responsible for the decline in differentiation observed. In conclusion, data suggest that elevated myoD methylation is retained throughout muscle cells proliferative lifespan as result of early life TNF-α treatment and has implications for the epigenetic control of muscle loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Shanti N, Saini A, Faulkner SH, Stewart CE (2008) Beneficial synergistic interactions of TNF-alpha and IL-6 in C2 skeletal myoblasts—potential cross-talk with IGF system. Growth factors (Chur, Switzerland) 26(2):61–73

    Article  CAS  PubMed  Google Scholar 

  • Aragao RD, Guzman-Quevedo O, Perez-Garcia G, Manhaes-de-Castro R, Bolanos-Jimenez F (2014) Maternal protein restriction impairs the transcriptional metabolic flexibility of skeletal muscle in adult rat offspring. Br J Nutr 112:1–10

    Article  Google Scholar 

  • Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19(5):553–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230(4727):758–766

    Article  CAS  PubMed  Google Scholar 

  • Blum R, Vethantham V, Bowman C, Rudnicki M, Dynlacht BD (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26(24):2763–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brameld JM, Mostyn A, Dandrea J, Stephenson TJ, Dawson JM, Buttery PJ, Symonds ME (2000) Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. J Endocrinol 167(3):429–437

    Article  CAS  PubMed  Google Scholar 

  • Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K (2010) Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci USA 107(34):15111–15116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos C, Valente L, Conceicao L, Engrola S, Fernandes J (2013) Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics 8(4):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25(3):502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292(5):C1660–C1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  CAS  PubMed  Google Scholar 

  • Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells (Dayton, Ohio) 25(4):885–894

    Article  CAS  Google Scholar 

  • Dilworth FJ, Blais A (2011) Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Res Therapy 2(2):18

    Article  CAS  Google Scholar 

  • Egner IM, Bruusgaard JC, Eftestol E, Gundersen K (2013) A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. J Physiol 591(Pt 24):6221–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahey AJ, Brameld JM, Parr T, Buttery PJ (2005) The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J Anim Sci 83(11):2564–2571

    CAS  PubMed  Google Scholar 

  • Foulstone EJ, Meadows KA, Holly JM, Stewart CE (2001) Insulin-like growth factors (IGF-I and IGF-II) inhibit C2 skeletal myoblast differentiation and enhance TNF α-induced apoptosis. J Cell Physiol 189(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Foulstone EJ, Savage PB, Crown AL, Holly JM, Stewart CE (2003) Adaptations of the IGF system during malignancy: human skeletal muscle versus the systemic environment. Horm Metab Res 35(11–12):667–674

    CAS  PubMed  Google Scholar 

  • Foulstone EJ, Huser C, Crown AL, Holly JM, Stewart CE (2004) Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha. Exp Cell Res 294(1):223–235

    Article  CAS  PubMed  Google Scholar 

  • Funai K, Parkington JD, Carambula S, Fielding RA (2006) Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290(4):R1080–R1086

    Article  CAS  PubMed  Google Scholar 

  • Gale CR, Martyn CN, Cooper C, Sayer AA (2007) Grip strength, body composition, and mortality. Int J Epidemiol 36(1):228–235

    Article  PubMed  Google Scholar 

  • Green CJ, Bunprajun T, Pedersen BK, Scheele C (2013) Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate. J Physiol 591(Pt 18):4621–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupkes M, Jonsson MK, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MA, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ (2011) Epigenetics: DNA demethylation promotes skeletal myotube maturation. Faseb J 25(11):3861–3872

    Article  CAS  PubMed  Google Scholar 

  • Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C (2006) Cohort profile: the Southampton Women’s Survey. Int J Epidemiol 35(1):42–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A (2013) Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes 62(2):355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, Jeacocke NA, Krook A, Zierath JR, Burke LM, Hawley JA (2015) Effects of sleeping with reduced carbohydrate availability on acute training responses. J Appl Physiol (1985):jap.00857.02014

  • Laukkanen P, Heikkinen E, Kauppinen M (1995) Muscle strength and mobility as predictors of survival in 75–84-year-old people. Age Ageing 24(6):468–473

    Article  CAS  PubMed  Google Scholar 

  • Mallinson JE, Sculley DV, Craigon J, Plant R, Langley-Evans SC, Brameld JM (2007) Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats. Br J Nutr 98(2):292–299

    Article  CAS  PubMed  Google Scholar 

  • Maples JM, Brault JJ (2015) Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women. 47(5):139–146

    CAS  Google Scholar 

  • McLeod KI, Goldrick RB, Whyte HM (1972) The effect of maternal malnutrition on the progeny in the rat. Studies on growth, body composition and organ cellularity in first and second generation progeny. Austral J Exp Biol Med Sci 50(4):435–446

    Article  CAS  Google Scholar 

  • Meadows KA, Holly JM, Stewart CE (2000) Tumor necrosis factor-alpha-induced apoptosis is associated with suppression of insulin-like growth factor binding protein-5 secretion in differentiating murine skeletal myoblasts. J Cell Physiol 183(3):330–337

    Article  CAS  PubMed  Google Scholar 

  • Patel HP, Syddall HE, Martin HJ, Stewart CE, Cooper C, Sayer AA (2010) Hertfordshire sarcopenia study: design and methods. BMC Geriatr 10:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel H, Syddall HE, Martin HJ, Cooper C, Stewart C, Sayer AA (2011) The feasibility and acceptability of muscle biopsy in epidemiological studies: findings from the Hertfordshire Sarcopenia Study (HSS). J Nutr Health Aging 15(1):10–15

    Article  PubMed  Google Scholar 

  • Patel HP, Jameson KA, Syddall HE, Martin HJ, Stewart CE, Cooper C, Sayer AA (2012) Developmental influences, muscle morphology, and sarcopenia in community-dwelling older men. J Gerontol A 67(1):82–87

    Article  CAS  Google Scholar 

  • Patel HP, Al-Shanti N, Davies LC, Barton SJ, Grounds MD, Tellam RL, Stewart CE, Cooper C, Sayer AA (2014) Lean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS). Calcif Tissue Int 95(4):308–316

    Article  CAS  PubMed  Google Scholar 

  • Player DJ, Martin NR, Passey SL, Sharples AP, Mudera V, Lewis MP (2014) Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle. Biotechnol Lett 36(5):1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Rantanen T (2003) Muscle strength, disability and mortality. Scand J Med Sci Sports 13(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281(6):558–560

    Article  CAS  PubMed  Google Scholar 

  • Rantanen T, Avlund K, Suominen H, Schroll M, Frandin K, Pertti E (2002) Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging Clin Exp Res 14(3 Suppl):10–15

    PubMed  Google Scholar 

  • Saini A, Al-Shanti N, Faulkner SH, Stewart CE (2008) Pro-and anti-apoptotic roles for IGF-I in TNF-alpha induced apoptosis: a MAP kinase mediated mechanism. Growth factors (Chur, Switzerland) 26(5):239-253

    Article  CAS  Google Scholar 

  • Saini A, Al-Shanti N, Sharples AP, Stewart CE (2012) Sirtuin 1 regulates skeletal myoblast survival and enhances differentiation in the presence of resveratrol. Exp Physiol 97(3):400–418

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51(2):383–392

    Article  CAS  PubMed  Google Scholar 

  • Sayer AA, Cooper C (2005) Fetal programming of body composition and musculoskeletal development. Early Hum Dev 81(9):735–744

    Article  PubMed  Google Scholar 

  • Sayer AA, Cooper C, Evans JR, Rauf A, Wormald RP, Osmond C, Barker DJ (1998) Are rates of ageing determined in utero? Age Ageing 27(5):579–583

    Article  CAS  PubMed  Google Scholar 

  • Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C (2004) Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol 59(9):M930–M934

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Sharples AP, Al-Shanti N, Stewart CE (2010) C2 and C2C12 murine skeletal myoblast models of atrophic and hypertrophic potential: relevance to disease and ageing? J Cell Physiol 225(1):240–250

    Article  CAS  PubMed  Google Scholar 

  • Sharples AP, Al-Shanti N, Lewis MP, Stewart CE (2011) Reduction of myoblast differentiation following multiple population doublings in mouse C(2) C(12) cells: a model to investigate ageing? J Cell Biochem 112(12):3773–3785

    Article  CAS  PubMed  Google Scholar 

  • Sharples AP, Player DJ, Martin NR, Mudera V, Stewart CE, Lewis MP (2012) Modelling in vivo skeletal muscle ageing in vitro using three dimensional bioengineered constructs. Aging Cell 8(10):1474–9726

    Google Scholar 

  • Shelley P, Martin-Gronert MS, Rowlerson A, Poston L, Heales SJ, Hargreaves IP, McConnell JM, Ozanne SE, Fernandez-Twinn DS (2009) Altered skeletal muscle insulin signaling and mitochondrial complex II–III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 297(3):R675–R681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CE, Newcomb PV, Holly JM (2004) Multifaceted roles of TNF-alpha in myoblast destruction: a multitude of signal transduction pathways. J Cell Physiol 198(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen SE, Sadow JL, Rotwein P (1989) Coordinate expression of insulin-like growth factor II and its receptor during muscle differentiation. Proc Natl Acad Sci USA 86(5):1543–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolosa L, Morla M, Iglesias A, Busquets X, Llado J, Olmos G (2005) IFN-gamma prevents TNF-alpha-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-kappaB activity. Cell Signal 17(11):1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Valencia AP, Spangenburg EE (2013) Remembering those ‘lazy’ days—imprinting memory in our satellite cells. J Physiol 591(Pt 18):4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  PubMed  Google Scholar 

  • Yates DT, Clarke DS, Macko AR, Anderson MJ, Shelton LA, Nearing M, Allen RE, Rhoads RP, Limesand SW (2014) Myoblasts from intrauterine growth-restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. J Physiol 182:194–201

    Google Scholar 

  • Zhu MJ, Ford SP, Nathanielsz PW, Du M (2004) Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol Reprod 71(6):1968–1973

    Article  CAS  PubMed  Google Scholar 

  • Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M (2006) Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol 575(Pt 1):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam P. Sharples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharples, A.P., Polydorou, I., Hughes, D.C. et al. Skeletal muscle cells possess a ‘memory’ of acute early life TNF-α exposure: role of epigenetic adaptation. Biogerontology 17, 603–617 (2016). https://doi.org/10.1007/s10522-015-9604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9604-x

Keywords

Navigation