Skip to main content
Log in

Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In this study, we investigated the anticancer activity of icariin (ICA) against human lung adenocarcinoma cells in vitro and in vivo and explored the role of endoplasmic reticulum (ER) stress (ERS) signaling in this process. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human lung adenocarcinoma A549 cells. Additionally, ICA exhibited potent anticancer activity, as evidenced by reductions in A549 cell adhesion, migration and intracellular glutathione (GSH) levels and increases in the apoptotic index, Caspase 3 activity, and reactive oxygen species. Furthermore, ICA treatment increased the expression of ERS-related molecules (p-PERK, ATF6, GRP78, p-eIF2α, and CHOP), up-regulated the apoptosis-related protein PUMA and down-regulated the anti-apoptosis-related protein Bcl2. The down-regulation of ERS signaling using PERK siRNA desensitized lung adenocarcinoma cells to ICA treatment, whereas the up-regulation of ERS signaling using thapsigargin (THA) sensitized lung adenocarcinoma cells to ICA treatment. Additionally, ICA inhibited the growth of human lung adenocarcinoma A549 cell xenografts by increasing the expression of ERS-related molecules (p-PERK and CHOP), up-regulating PUMA, and down-regulating Bcl2. These data indicate that ICA is a potential inhibitor of lung adenocarcinoma cell growth by targeting ERS signaling and suggest that the activation of ERS signaling may represent a novel therapeutic intervention for lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X et al (2014) miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer 50:1013–1024

    Article  CAS  PubMed  Google Scholar 

  3. Guo X, Wang W, Hu J, Feng K, Pan Y, Zhang L et al (2012) Lentivirus-mediated RNAi knockdown of NUPR1 inhibits human nonsmall cell lung cancer growth in vitro and in vivo. Anat Rec (Hoboken) 295:2114–2121

    Article  CAS  Google Scholar 

  4. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  5. Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX (2007) Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 87:130–140

    Article  CAS  PubMed  Google Scholar 

  6. Xu HB, Huang ZQ (2007) Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul Pharmacol 47:18–24

    Article  CAS  PubMed  Google Scholar 

  7. He W, Sun H, Yang B, Zhang D, Kabelitz D (1995) Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung 45:910–913

    CAS  PubMed  Google Scholar 

  8. Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J et al (2014) Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG. Bone 66:189–198

    Article  CAS  PubMed  Google Scholar 

  9. Ding L, Liang XG, Hu Y, Zhu DY, Lou YJ (2008) Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev 17:751–760

    Article  CAS  PubMed  Google Scholar 

  10. Wo Y, Zhu D, Yu Y, Lou Y (2008) Involvement of NF-kappaB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol 586:59–66

    Article  CAS  PubMed  Google Scholar 

  11. Zhang DC, Liu JL, Ding YB, Xia JG, Chen GY (2013) Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer by suppressing NF-kappaB. Acta Pharmacol Sin 34:301–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li ZJ, Yao C, Liu SF, Chen L, Xi YM, Zhang W et al (2014) Cytotoxic effect of icaritin and its mechanisms in inducing apoptosis in human burkitt lymphoma cell line. Biomed Res Int 2014:391512

    PubMed Central  PubMed  Google Scholar 

  13. Li W, Wang M, Wang L, Ji S, Zhang J, Zhang C (2014) Icariin synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cell Biochem Biophys 68:427–436

    Article  PubMed  Google Scholar 

  14. Zhang Q, Li H, Wang S, Liu M, Feng Y, Wang X (2013) Icariin protects rat cardiac H9c2 cells from apoptosis by inhibiting endoplasmic reticulum stress. Int J Mol Sci 14:17845–17860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li JQ, Yu JT, Jiang T, Tan L (2015) Endoplasmic reticulum dysfunction in Alzheimer’s disease. Mol Neurobiol 51:383–395

    Article  CAS  PubMed  Google Scholar 

  16. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  17. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  18. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sanderson TH, Deogracias MP, Nangia KK, Wang J, Krause GS, Kumar R (2010) PKR-like endoplasmic reticulum kinase (PERK) activation following brain ischemia is independent of unfolded nascent proteins. Neuroscience 169:1307–1314

    Article  CAS  PubMed  Google Scholar 

  20. Lisbona F, Rojas-Rivera D, Thielen P, Zamorano S, Todd D, Martinon F et al (2009) BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 33:679–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Beck D, Niessner H, Smalley KS, Flaherty K, Paraiso KH, Busch C et al (2013) Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal 6:ra7

    Article  PubMed Central  PubMed  Google Scholar 

  22. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12:105–118

    Article  CAS  PubMed  Google Scholar 

  23. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  CAS  PubMed  Google Scholar 

  24. Barille-Nion S, Bah N, Vequaud E, Juin P (2012) Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy. Anticancer Res 32:4225–4233

    CAS  PubMed  Google Scholar 

  25. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Hao J, Pu J, Zhao L, Lu Z, Hu J et al (2011) Icariin induces apoptosis in mouse MLTC-10 Leydig tumor cells through activation of the mitochondrial pathway and down-regulation of the expression of piwil4. Int J Oncol 39:973–980

    CAS  PubMed  Google Scholar 

  27. Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C (2014) Redox controls UPR to control redox. J Cell Sci 127(Pt 17):3649–3658

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Dong P, Wang J, Zhang J, Gu J, Wu X et al (2010) Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Lett 298:222–230

    Article  CAS  PubMed  Google Scholar 

  29. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G et al (2014) microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer 50:2336–2350

    Article  CAS  PubMed  Google Scholar 

  30. Shi W, Nie D, Jin G, Chen W, Xia L, Wu X et al (2012) BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials 33:3119–3126

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Yang Y, Liang Z, Duan W, Yang J, Yan J et al (2013) Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells. PLoS One 8:e83699

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hsin IL, Hsiao YC, Wu MF, Jan MS, Tang SC, Lin YW et al (2012) Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol Appl Pharmacol 263:330–337

    Article  CAS  PubMed  Google Scholar 

  33. Anshu A, Thomas S, Agarwal P, Ibarra-Rivera TR, Pirrung MC, Schonthal AH (2011) Novel proteasome-inhibitory syrbactin analogs inducing endoplasmic reticulum stress and apoptosis in hematological tumor cell lines. Biochem Pharmacol 82:600–609

    Article  CAS  PubMed  Google Scholar 

  34. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  35. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  36. Gotow T, Shibata M, Kanamori S, Tokuno O, Ohsawa Y, Sato N et al (2000) Selective localization of Bcl-2 to the inner mitochondrial and smooth endoplasmic reticulum membranes in mammalian cells. Cell Death Differ 7:666–674

    Article  CAS  PubMed  Google Scholar 

  37. Seervi M, Sobhan PK, Joseph J, Ann Mathew K, Santhoshkumar TR (2013) ERO1alpha-dependent endoplasmic reticulum-mitochondrial calcium flux contributes to ER stress and mitochondrial permeabilization by procaspase-activating compound-1 (PAC-1). Cell Death Dis 4:e968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Choi AY, Choi JH, Hwang KY, Jeong YJ, Choe W, Yoon KS et al (2014) Licochalcone A induces apoptosis through endoplasmic reticulum stress via a phospholipase Cgamma1-, Ca(2+)-, and reactive oxygen species-dependent pathway in HepG2 human hepatocellular carcinoma cells. Apoptosis 19:682–697

    Article  CAS  PubMed  Google Scholar 

  39. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR et al (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186:783–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Li G, Scull C, Ozcan L, Tabas I (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191:1113–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Delaunay-Moisan A, Appenzeller-Herzog C (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling. Free Radic Biol Med 83:341–351

    Article  CAS  PubMed  Google Scholar 

  43. Kojer K, Riemer J (2014) Balancing oxidative protein folding: the influences of reducing pathways on disulfide bond formation. Biochim Biophys Acta 1844:1383–1390

    Article  CAS  PubMed  Google Scholar 

  44. Li WW, Gao XM, Wang XM, Guo H, Zhang BL (2011) Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity. Mutat Res 708:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (81000938) and the grants from the Excellent Doctoral Support Project of the Fourth Military Medical University (2013D01).

Conflict of interest

The authors declare that they have no conflicts of interest in the studies described.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Li or Xiaolong Yan.

Additional information

Shouyin Di, Chongxi Fan and Yang Yang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2015_1142_MOESM1_ESM.tif

Supplementary Fig. 1 Effect of ICA treatment on the viability and morphology of human normal bronchial epithelial cells and lung adenocarcinoma cells. A. 16HBE cells were treated with different concentrations of ICA (25, 50, and 100 µM) and assessed at different time points (12, 24, and 36 h). Viability is expressed as OD values. B. A549 cells were treated with different concentrations of ICA (10, 15, and 20 µM) and assessed at different time points (12, 24, and 36 h). Viability is expressed as OD values. C. A549 cell morphology was observed under an inverted phase contrast microscope after the cells were treated for 24 h, and images were obtained. All of the results are expressed as the mean ± SD, n = 6. Supplementary material 1 (TIFF 2205 kb)

10495_2015_1142_MOESM2_ESM.tif

Supplementary Fig. 2 Effect of a lower concentration ICA on ERS signaling proteins in human lung adenocarcinoma cells (24 h). Representative Western blotting results of p-PERK, ATF6, GRP78, CHOP, and p-eIF2α are shown. Membranes were reprobed for β-actin expression to show that similar amounts of protein were loaded in each lane. The results are expressed as the mean ± SD, n = 6. aaP < 0.01 vs. the control group, bbP < 0.01 vs. the 10 μM ICA-treated group, ccP < 0.01 vs. the 15 μM ICA-treated group. Supplementary material 2 (TIFF 1080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, S., Fan, C., Yang, Y. et al. Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells. Apoptosis 20, 1229–1241 (2015). https://doi.org/10.1007/s10495-015-1142-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1142-0

Keywords

Navigation