Skip to main content
Log in

Ivermectin induces nonprotective autophagy by downregulating PAK1 and apoptosis in lung adenocarcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

LUAD (Lung adenocarcinoma), the most common subtype of lung carcinoma and one of the highest incidences and mortality cancers in the world remains still a substantial treatment challenge. Ivermectin, an avermectin derivative, has been traditionally used as an antiparasitic agent in human and veterinary medicine practice during the last few decades. Though ivermectin has been shown to be effective against a variety of cancers, however, there is few available data reporting the antitumor effects of ivermectin in LUAD.

Methods

The effect of ivermectin on cell viability and proliferative ability of LUAD cells was evaluated using CCK-8 and colony formation assay. Apoptosis rate and autophagy flux were detected using flow cytometry based on PI/Annexin V staining and confocal laser scanning microscope based on LC3-GFP/RFP puncta, respectively. Western blotting experiment was conducted to verify the results of changes in apoptosis and autophagy. LUAD-TCGA and GEO databases were used to analyse the expression and predictive value of PAK1 in LUAD patients. Xenograft model and immumohistochemical staining were used for verification of the inhibitor effect of ivermectin in vivo.

Results

Ivermectin treatment strikingly impeded the colony formation, and the viability of the cell, along with cell proliferation, and caused the apoptosis and enhanced autophagy flux in LUAD cells. In addition, ivermectin-induced nonprotective autophagy was confirmed by treating LUAD cells with 3-MA, an autophagy inhibitor. Mechanistically, we found that ivermectin inhibited PAK1 protein expression in LUAD cells and we confirmed that overexpression of PAK1 substantially inhibited ivermectin-induced autophagy in LUAD cells. Based on TCGA and GEO databases, PAK1 was highly expressed in LUAD tissues as compared with normal tissues. Furthermore, LUAD patients with high PAK1 level have poor overall survival. Finally, in vivo experiments revealed that ivermectin efficiently suppressed the cellular growth of LUAD among nude mice.

Conclusion

This study not only revealed the mechanism of ivermectin inhibited the growth of LUAD but also supported an important theoretical basis for the development of ivermectin during the therapy for LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data that support the findings of the current study are included in the article.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71:209–249

    PubMed  Google Scholar 

  2. Succony L, Rassl DM, Barker AP, McCaughan FM, Rintoul RC (2021) Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev 99:102237

    Article  CAS  PubMed  Google Scholar 

  3. Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, Läubli H, Zippelius A, Hartmann F, Cheng H-W, Hönger G, Recher M, Goldman J, Cozzio A, Früh M, Neefjes J, Driessen C, Ludewig B, Hegazy AN, Jochum W, Speiser DE, Flatz L (2019) Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol 5:1043–1047

    Article  PubMed  Google Scholar 

  4. Reck M, Schenker M, Lee KH, Provencio M, Nishio M, Lesniewski-Kmak K, Sangha R, Ahmed S, Raimbourg J, Feeney K, Corre R, Franke FA, Richardet E, Penrod JR, Yuan Y, Nathan FE, Bhagavatheeswaran P, DeRosa M, Taylor F, Lawrance R, Brahmer J (2019) Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non–small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. Eur J Cancer 116:137–147

    Article  CAS  PubMed  Google Scholar 

  5. Liu W-j, Du Y, Wen R, Yang M, Xu J (2020) Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 206:107438

    Article  CAS  PubMed  Google Scholar 

  6. Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, Leming P, Geese WJ, Yoon D, Li A, Brahmer J (2018) Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: results from the CA209-003 study. J Clin Oncol 36:1675–1684

    Article  CAS  PubMed  Google Scholar 

  7. Ikeda H, Ōmura S (1997) Avermectin biosynthesis. Chem Rev 97:2591–2610

    Article  CAS  PubMed  Google Scholar 

  8. González Canga A, Sahagún Prieto AM, José Diez Liébana M, Martínez NF, Vega MS, Vieitez JJG (2009) The pharmacokinetics and metabolism of ivermectin in domestic animal species. Vet J 179:25–37

    Article  PubMed  Google Scholar 

  9. Laing R, Gillan V, Devaney E (2017) Ivermectin – old drug, new tricks? Trends Parasitol 33:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, Ludmerer SW, Zheng Y, Smith M, Arena JP, Cohen CJ, Schmatz D, Warmke J, Cully DF (2000) Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci 97:13949–13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fritz LC, Wang CC, Gorio A (1979) Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci 76:2062–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Didier A, Loor F (1996) The abamectin derivative ivermectin is a potent P-glycoprotein inhibitor. Anticancer Drugs 7:745–751

    Article  CAS  PubMed  Google Scholar 

  13. Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, Fonseca SB, Sun H, Wood TE, Ward R, Minden MD, Batey RA, Datti A, Wrana J, Kelley SO, Schimmer AD (2010) The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood 116:3593–3603

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto H, Messerli SM, Sudo T, Maruta H (2009) Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther 3:243–246

    CAS  PubMed  Google Scholar 

  15. Liu Y, Fang S, Sun Q, Liu B (2016) Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun 480:415–421

    Article  CAS  PubMed  Google Scholar 

  16. Draganov D, Gopalakrishna-Pillai S, Chen Y-R, Zuckerman N, Moeller S, Wang C, Ann D, Lee PP (2015) Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 5:16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umar S, Seth C, Mas C, Conod A, Mueller J, Siems K, Kuciak M, Borges I, Ruiz i Altaba A (2016) Long-lasting WNT-TCF response blocking and epigenetic modifying activities of withanolide F in human cancer cells. PLoS ONE 11:e0168170

    Article  Google Scholar 

  18. Kwon Y-J, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, Gil V, Christova R, Bansal N, Yang S, Sharma R, Ariztia EV, Frankum J, Brough R, Sbirkov Y, Ashworth A, Lord CJ, Zelent A, Farias E, Zhou M-M, Waxman S (2015) Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther 14:1824–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin J, Park G, Lee JE, Choi EY, Park JY, Kim T-H, Park N, Jin X, Jung J-E, Shin D, Hong JH, Kim H, Yoo H, Lee S-H, Kim Y-J, Park JB, Kim JH (2015) DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain 138:2553–2570

    Article  PubMed  Google Scholar 

  20. Dominguez-Gomez G, Chavez-Blanco A, Medina-Franco J, Saldivar-Gonzalez F, Flores-Torrontegui Y, Juarez M, Gonzalez-Fierro A (2017) Ivermectin as an inhibitor of cancer stem-like cells. Mol Med Rep 17:3397–3403

    PubMed  Google Scholar 

  21. Dou Q, Chen H-N, Wang K, Yuan K, Lei Y, Li K, Lan J, Chen Y, Huang Z, Xie N, Zhang L, Xiang R, Nice EC, Wei Y, Huang C (2016) Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Can Res 76:4457–4469

    Article  CAS  Google Scholar 

  22. Samy A, Hussein MA, Munirathinam G (2023) Eprinomectin: a derivative of ivermectin suppresses growth and metastatic phenotypes of prostate cancer cells by targeting the β-catenin signaling pathway. J Cancer Res Clin Oncol 149:9085–9104

    Article  CAS  PubMed  Google Scholar 

  23. Song D, Liang H, Qu B, Li Y, Liu J, Zhang Y, Li L, Hu L, Zhang X, Gao A (2018) Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J Cell Biochem 120:622–633

    Article  PubMed  Google Scholar 

  24. Zhang H, Xu X, Xu R, Ye T (2022) Drug repurposing of ivermectin abrogates neutrophil extracellular traps and prevents melanoma metastasis. Front Oncol 12:989167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Obeng E (2021) Apoptosis (programmed cell death) and its signals - a review. Braz J Biol 81:1133–1143

    Article  CAS  PubMed  Google Scholar 

  26. Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K, Lei Y, Yuan K, Li Y, Lan J, Cheng L, Xie N, Xiang R, Nice EC, Huang C, Wei Y (2014) Itraconazole suppresses the growth of glioblastoma through induction of autophagy. Autophagy 10:1241–1255

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin R, Wang X, Zang R, Liu C, Zheng S, Li H, Sun N, He J (2020) Desmoglein-2 modulates tumor progression and osimertinib drug resistance through the EGFR/Src/PAK1 pathway in lung adenocarcinoma. Cancer Lett 483:46–58

    Article  CAS  PubMed  Google Scholar 

  28. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272

    Article  CAS  PubMed  Google Scholar 

  29. Mastrangelo E, Pezzullo M, De Burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, de Lamballerie X, Neyts J, Hanson AM, Frick DN, Bolognesi M, Milani M (2012) Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother 67:1884–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kircik LH, Del Rosso JQ, Layton AM, Schauber J (2016) Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. J Drugs Dermatol 15:325–332

    PubMed  Google Scholar 

  31. Chen L, Bi S, Wei Q, Zhao Z, Wang C, Xie S (2020) Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma. J Cell Mol Med 24:5387–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i Altaba A (2014) The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med 6:1263–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Liang H, Chen C, Wang X, Qu F, Wang H, Yang K, Wang Q, Zhao N, Meng J, Gao A (2019) Ivermectin induces autophagy-mediated cell death through the AKT/mTOR signaling pathway in glioma cells. Biosc Rep. https://doi.org/10.1042/BSR20192489

  35. Deng F, Xu Q, Long J, Xie H (2018) Suppressing ROS-TFE3-dependent autophagy enhances ivermectin-induced apoptosis in human melanoma cells. J Cell Biochem 120:1702–1715

    Article  PubMed  Google Scholar 

  36. Rane CK, Minden A (2014) P21 activated kinases: structure, regulation, and functions. Small GTPases 5:e28003

    Article  PubMed  PubMed Central  Google Scholar 

  37. Semenova G, Chernoff J (2017) Targeting PAK1. Biochem Soc Trans 45:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung JH, Kim T, Kang YJ, Yoon SH, Kim YS, Lee SK, Son JH, Son B, Kim DH (2020) PAK1 as a potential therapeutic target in male smokers with EGFR-mutant non-small cell lung cancer. Molecules 25:5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Z, Liu B, Lin T, Zhang Y, Zhang L, Wang M (2018) Multiomics analysis on DNA methylation and the expression of both messenger RNA and microRNA in lung adenocarcinoma. J Cell Physiol 234:7579–7586

    Article  PubMed  Google Scholar 

  40. Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, Cheng F, Li J, Fang Q (2021) Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res 163:105207

    Article  CAS  PubMed  Google Scholar 

  41. Zhou S, Wu H, Ning W, Wu X, Xu X, Ma Y, Li X, Hu J, Wang C, Wang J (2021) Ivermectin has new application in inhibiting colorectal cancer cell growth. Front Pharmacol 12:717529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Wang J, Zhang P, Zhang C, Wang W, Wu M, Xu W, Tao L, Li Z, Zhang Y (2023) Cytotoxicity and autophagy induced by ivermectin via AMPK/mTOR signaling pathway in RAW2647 cells. Molecules 28:2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang L, Wang P, Sun Y-J, Wu Y-J (2019) Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res 38:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu B, Tan H, Yu L, Liao Q, Guo W (2022) Repurposing ivermectin to augment chemotherapy’s efficacy in osteosarcoma. Hum Exp Toxicol 41:9603271221143692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the language polishing service provided by Editage.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81972190), the Excellent Talent Program of Chongqing (cstc2022ycjh-bgzxm0109), and the Basic Science and Frontier Technology Project of Chongqing (cstc2018jcyjAX0205).

Author information

Authors and Affiliations

Authors

Contributions

HZ and JGD conceived and designed, performed experiments, analyzed data and drafted the initial manuscript; MYL and JZ performed experiments and helped in literature search, did statistical; XL performed animal experiments; DZ, XFD and QXL analyzed and reviewed the data; HZ guided research and analyzed data, revised manuscript; JGD reviewed and approved the final manuscript. All authors read and accepted the final submitted manuscript.

Corresponding authors

Correspondence to Ji-Gang Dai or Hong Zheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All mouse experiments were conducted according to the protocols approved by the Ethical Committee for Animal Experimentation of the Army Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MY., Zhang, J., Lu, X. et al. Ivermectin induces nonprotective autophagy by downregulating PAK1 and apoptosis in lung adenocarcinoma cells. Cancer Chemother Pharmacol 93, 41–54 (2024). https://doi.org/10.1007/s00280-023-04589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04589-6

Keywords

Navigation