Skip to main content
Log in

Fabrication of gold nanoparticles/polypyrrole composite-modified electrode for sensitive hydroxylamine sensor design

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A highly sensitive hydroxylamine (HA) electrochemical sensor is developed based on electrodeposition of gold nanoparticles with diameter of 8 nm on the pre-synthesized polypyrrole matrix and formed gold nanoparticles/polypyrrole (GNPs/PPy) composite on glassy carbon electrode. The electrochemical behavior and electrocatalytic activity of the composite-modified electrode are investigated. The GNPs/PPy composite exhibits a distinctly higher electrocatalytic activity for the oxidation of HA than GNPs with twofold enhancement of peak current. The enhanced electrocatalytic activity is attributed to the synergic effect of the highly dispersed gold metal particles and PPy matrix. The overall numbers of electrons involved in HA oxidation, the electron transfer coefficient, catalytic rate constant, and diffusion coefficient are investigated by chronoamperometry. The sensor presents two wide linear ranges of 4.5 × 10−7–1.2 × 10−3 M and 1.2 × 10−3–19 × 10−3 M with the detection limit of 4.5 × 10−8 M (s/n = 3). In addition, the proposed electrode shows excellent sensitivity, selectivity, reproducibility, and stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou YG, Yang S, Qian QY, Xia XH (2009) Electrochem Commun 11:216–219

    Article  CAS  Google Scholar 

  2. Tsierkezos NG, Ritter U (2010) J Solid State Electrochem 14:1101–1107

    Article  CAS  Google Scholar 

  3. Hong WJ, Bai H, Xu YX, Yao ZY, Gu ZZ, Shi GQ (2010) J Phys Chem C 114:1822–1826

    Article  CAS  Google Scholar 

  4. Yu JX, Rance GA, Khlobystov AN (2009) J Mater Chem 19:8928–8935

    Article  CAS  Google Scholar 

  5. Kannan P, John SA (2010) Anal Chim Acta 663:158–164

    Article  CAS  Google Scholar 

  6. Hosseini M, Momeni MM (2010) J Solid State Electrochem 14:1109–1115

    Article  CAS  Google Scholar 

  7. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  8. Liu Q, Nayfeh MH, Yau ST (2010) J Power Sources 195:3956–3959

    Article  CAS  Google Scholar 

  9. Che X, Yuan R, Chai YQ, Ma LP, Li WJ, Li JJ (2009) Microchim Acta 167:159–165

    Article  CAS  Google Scholar 

  10. Wei T, Luo GL, Fan ZJ, Zheng C, Yan J, Yao CZ, Li WF, Zhang C (2009) Carbon 47:2296–2299

    Article  CAS  Google Scholar 

  11. Joseph S, McClure JC, Sebastian PJ, Moreira J, Valenzuela E (2008) J Power Sources 177:161–166

    Article  CAS  Google Scholar 

  12. Yang XM, Li L, Yan F (2010) Sens Actuators B 145:495–500

    Article  Google Scholar 

  13. Mavinakuli P, Wei SY, Wang Q, Karki AB, Dhage S, Wang Z, Young DP, Guo ZH (2010) J Phys Chem C 114:3874–3882

    Article  CAS  Google Scholar 

  14. Mallouki M, Tran-Van F, Sarrazin C, Chevrot C, Fauvarque JF (2009) Electrochim Acta 54:2992–2997

    Article  CAS  Google Scholar 

  15. Li M, Wei ZX, Jiang L (2008) J Mater Chem 18:2276–2280

    Article  CAS  Google Scholar 

  16. Kim HS, Park DH, Lee YB, Kim DC, Kim HJ, Kim J, Joo J (2007) Synth Met 157:910–913

    Article  CAS  Google Scholar 

  17. Ekanayake EMIM, Preethichandra DMG, Kaneto K (2007) Biosens Bioelectron 23:107–113

    Article  CAS  Google Scholar 

  18. Li XG, Hou ZZ, Huang MR, Moloney MG (2009) J Phys Chem C 113:21586–21595

    Article  CAS  Google Scholar 

  19. Park H, Kim Y, Choi YS, Hong WH, Jung D (2008) J Power Sources 178:610–619

    Article  CAS  Google Scholar 

  20. Selvaraj V, Alagar M (2007) Electrochem Commun 9:1145–1153

    Article  CAS  Google Scholar 

  21. Huang K, Zhang YJ, Han DX, Shen YF, Wang ZJ, Yuan JH, Zhang QX, Niu L (2006) Nanotechnology 17:283–288

    Article  CAS  Google Scholar 

  22. Vasilyeva SV, Vorotyntsev MA, Bezverkhyy I, Lesniewska E, Heintz O, Chassagnon R (2008) J Phys Chem C 112:19878–19885

    Article  CAS  Google Scholar 

  23. Fernando PN, Egwu IN, Hussain MS (2002) J Chromatogr A 956:261–270

    Article  CAS  Google Scholar 

  24. Hofman T, Lees H (1953) Biochem J 54:579–583

    CAS  Google Scholar 

  25. Smith RP, Layne WR (1969) J Pharmacol Exp Ther 165:30–35

    CAS  Google Scholar 

  26. Kolasa T, Wardencki W (1974) Talanta 21:845–857

    Article  CAS  Google Scholar 

  27. Veena K, Narayana B (2010) Oxid Commun 33:54–61

    CAS  Google Scholar 

  28. George M, Nagaraja KS, Balasubramanian N (2008) Chem Anal 53:315–322

    CAS  Google Scholar 

  29. Hu S, Zhang M, Pang DW, Cheng JK (2000) Anal Sci 16:807–810

    Article  CAS  Google Scholar 

  30. Seike Y, Fukumori R, Senga Y, Oka H, Fujinaga K, Okumura M (2004) Anal Sci 20:139–142

    Article  CAS  Google Scholar 

  31. Zhao C, Song JF (2001) Anal Chim Acta 434:261–267

    Article  CAS  Google Scholar 

  32. Ravichandran K, Baldwin RP (1983) Anal Chem 55:1782–1786

    Article  CAS  Google Scholar 

  33. Ardakani MM, Karimi MA, Mirdehghan SM, Zare MM, Mazidi R (2008) Sens Actuators B 132:52–59

    Article  Google Scholar 

  34. Rosca V, Beltramo GL, Koper MTM (2004) J Phys Chem B 108:8294–8304

    Article  CAS  Google Scholar 

  35. Zare HR, Hashemi SH, Benvidi A (2010) Anal Chim Acta 668:182–187

    Article  CAS  Google Scholar 

  36. Shervedani RK, Bagherzadeh M (2008) Electrochim Acta 53:6293–6303

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical Methods:Fundamentals and Applications. John Wiley, New York

    Google Scholar 

  38. Zare HR, Sobhani Z, Mazloum-Ardakani M (2007) Sens Actuators B 126:641–647

    Article  Google Scholar 

  39. Zhang CH, Wang GF, Liu M, Feng YH, Zhang ZD, Fang B (2010) Electrochim Acta 55:2835–2840

    Article  CAS  Google Scholar 

  40. Shi LH, Wu T, He P, Li D, Sun CY, Li JH (2005) Electroanalysis 17:2190–2194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University (NCET-10-883), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Specialized Research Fund for Shanghai Second Polytechnic University (XQD208014), and Excellent Young Scholars Research Fund of Shanghai (egd08014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xie, H. & Li, Y. Fabrication of gold nanoparticles/polypyrrole composite-modified electrode for sensitive hydroxylamine sensor design. J Solid State Electrochem 16, 795–802 (2012). https://doi.org/10.1007/s10008-011-1431-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1431-7

Keywords

Navigation