Skip to main content

Advertisement

Log in

Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Using three models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we compare the direct and other effects of anthropogenic aerosols on observed and simulated annual, winter, and summer temperature changes. Three regions, namely, arid–semiarid area, humid–semiarid area, and the whole of China, are studied. The temperature changes caused by other effects of anthropogenic aerosol (OE) are calculated from the difference between the anthropogenic aerosol forcing run (AA) and the anthropogenic aerosol direct effect forcing run (DE). When the combined effects are considered, a significant area-averaged cooling rate varies in the range of −0.86 to −0.76 °C per century throughout China. Meanwhile, the isolated direct and other effects lower the temperature nationwide by −0.66 to −0.55 °C per century, and −0.31 to −0.11 °C per century, respectively. From a nonlinear perspective, the aerosol-induced temperature experiences a cooling trend, with AA having the largest cooling trend changes both annually and in the summer, while DE has the greatest reduction in the winter. Additionally, the influence of OE cannot be detected in observed annual changes over the arid–semiarid area and the whole of China, while the others are clearly detectable in all cases. AA (DE, OE) reduces the observational temperature mainly over the humid–semihumid region, where the contribution to the observed warming ranges from −515.2 % (−298.7 %, −198.9 %) to −173.6 % (−130.3 %, −66.4 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim Dyn 21:477–491

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM et al (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  Google Scholar 

  • Che HZ, Shi GY, Zhang XY et al (2005) Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys Res Lett 32:L06803

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Flanner MG, Zender CS, Randerson JT et al (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112:D11202

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Giorgi F, Bi XQ, Qian Y (2002) Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: a regional coupled climate-chemistry/aerosol model study. J Geophys Res 107(D20):4439

    Article  Google Scholar 

  • Giorgi F, Bi XQ, Qian Y (2003) Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Clim Chang 58:345–376

    Article  Google Scholar 

  • Guo X, Fu D, Guo X et al (2014) A case study of aerosol impacts on summer convective clouds and precipitation over Northern China. Atmos Res 142:142–157

    Article  Google Scholar 

  • Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502

    Google Scholar 

  • Hansen J, Nazarenko L (2004) BC climate forcing via snow and ice albedos. Proc Natl Acad Sci 101:423–428

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ et al (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Haywood JM, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosol: a review. Rev Geophys 38:513–543

    Article  Google Scholar 

  • Haywood JM, Francis P, Dubovik O et al (2003) Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000. J Geophys Res 108(D13):8471

    Google Scholar 

  • Huang NE, Wu Z (2008) A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev Geophys 46:RG2006

    Article  Google Scholar 

  • Huang Y, Dickinson RE, Chameides WL (2006) Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci U S A 103:4371–4376

    Article  Google Scholar 

  • Huang J, Guan X, Ji F (2012) Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys 12:5391–5398

    Article  Google Scholar 

  • Jacobson MZ (2004) Climate response of fossil fuel and biofuel BC, accounting for BC’s feedback to snow and sea ice albedo and emissivity. J Geophys Res 109:D21201

    Article  Google Scholar 

  • Ji F, Wu Z, Huang J et al (2014) Evolution of land surface air temperature trend. Nat Clim Chang 4:462–466

    Article  Google Scholar 

  • Jiang Y, Liu X, Yang X et al (2013) A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos Environ 70:51–63

    Article  Google Scholar 

  • Koch D, Menon S, Genio AD et al (2009) Distinguishing aerosol impacts on climate over the past century. J Clim 22:2659–2677

    Article  Google Scholar 

  • Levine JS, Cofer WR, Cahoon DR, Winstead EL (1995) Biomass burning: a driver for global change. Environ Sci Technol 29:120–125

    Google Scholar 

  • Liu PF, Zhao CS, Hallbauer E et al (2011a) Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China plain. Atmos Chem Phys 11:3479–3494

    Article  Google Scholar 

  • Liu X, Xie X, Yin ZY et al (2011b) A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor Appl Climatol 106:343–354

    Article  Google Scholar 

  • Liu X, Yan L, Yang P et al (2011c) Influence of Indian summer monsoonon aerosol loading in East Asia. J Appl Meteorol Climatol 50:523–533

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo YF (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Qian Y, Leung RL, Ghan SJ, Giorgi F (2003) Regional climate effects of aerosols over China: modeling and observation. Tellus B 55:914–934

    Article  Google Scholar 

  • Qian C, Yan ZW, Wu Z et al (2011) Trends in temperature extremes in association with weather–intraseasonal fluctuations in Eastern China. Adv Atmos Sci 28(2):297–309

    Article  Google Scholar 

  • Qin Z, Zou X, Weng F (2012) Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998–2010. Clim Dyn 39:1763–1779

    Article  Google Scholar 

  • Ribes A, Terray L (2013) Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature. Clim Dyn 41:2837–2853

    Article  Google Scholar 

  • Ribes A, Planton S, Terray L (2013) Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis. Clim Dyn 41:2817–2836

    Article  Google Scholar 

  • Shi Y, Gao X, Wu J et al (2011) Changes in snow cover China in the 21st century as simulated by a high resolution regional climate model. Environ Res Lett 6:045401

    Article  Google Scholar 

  • Shine K, Fouquart Y, Ramaswamy V et al (1995) Radiative forcing. In: Houghton J, Meira Filho L, Bruce J, Lee H, Callander B, Harris N, Maskell K (eds) Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, pp 163–203

    Google Scholar 

  • Shiogama H, Christidis N, Caesar J et al (2006) Detection of greenhouse gas and aerosol influences in changes in temperature extremes. SOLA 2:152–155

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613

    Article  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR et al (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809

    Article  Google Scholar 

  • Sun YL, Wang ZF, Fu PQ et al (2013) Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos Chem Phys 13:4577–4592

    Article  Google Scholar 

  • Sun Y, Zhang XB, Zwiers FW (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Chang 4:1082–1085

    Article  Google Scholar 

  • Tao R, Che HZ, Chen QL et al (2014) Study of aerosol optical properties based on ground measurements over Sichuan Basin, China. Aerosol Air Qual Res 14(3):905–915

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Wang T, Li S, Shen Y, Deng J, Xie M (2010) Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res 115:D00K26

    Google Scholar 

  • Wen HQ, Zhang X, Xu Y et al (2013) Detecting human influence on extreme temperatures in China. Geophys Res Lett 40:1171–1176

    Article  Google Scholar 

  • Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8:024033

    Article  Google Scholar 

  • Wu PP, Han ZW (2011) Modeling of the second indirect effect of anthropogenic aerosols in East Asia. Atmos Ocean Sci Lett 4:316–323

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41

    Article  Google Scholar 

  • Wu Z, Huang NE, Wallace JM et al (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773

    Article  Google Scholar 

  • Xu Q (2001) Abrupt change of the mid-summer climate in Central East China by the influence of atmospheric pollution. Atmos Environ 35:5029–5040

    Article  Google Scholar 

  • Yang Q, Bitz CM, Doherty SJ (2014) Offsetting effects of aerosols on Arctic and global climate in the late 20th century. Atmos Chem Phys 14:3969–3975

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC et al (2007) Detection of human influence on 20th century precipitation trends. Nature 448:461–465

    Article  Google Scholar 

  • Zhao CS, Tie XX, Lin YP (2006) A possible positive feedback of reduction of precipitation and increase in aerosols over Eastern Central China. Geophys Res Lett 33:L11814

    Article  Google Scholar 

  • Zhuang BL, Lia S, Wang TJ et al (2013a) Direct radiative forcing and climate effects of anthropogenic aerosols with different mixing states over China. Atmos Environ 79:349–361

    Article  Google Scholar 

  • Zhuang BL, Liu Q, Wang TJ et al (2013b) Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China. Theor Appl Climatol 114:651–672

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the valuable suggestions from the anonymous reviewers. This work was supported by grants from the National Basic Research Program of China (2012CB956203), Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (PAEKL-2015-C1), and the National Natural Science Foundation of China (41405090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, T. & Ying, K. Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor Appl Climatol 125, 529–540 (2016). https://doi.org/10.1007/s00704-015-1527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1527-6

Keywords

Navigation