Skip to main content

Advertisement

Log in

Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg m−3, 8 mg m−2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and −0.95 W m−2, respectively, leading to a net RF of −0.15 W m−2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC’s indirect effect. Further, the net effect of BC might cause a decrease of precipitation of −7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC’s indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC’s direct effect, while changes in surface air temperature and precipitation might be influenced by BC’s indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047. doi:10.1126/science.288.5468.1042

    Article  Google Scholar 

  • Beheng KD (1994) A parameterization of warm cloud microphysical conversion processes. Atmos Res 33:193–206. doi:10.1016/0169-8095(94)90020-5

    Article  Google Scholar 

  • Berry EX (1967) Cloud droplet growth by collection. J Atmos Sci 24:688–701. doi:10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: the challenge in investigating links. Atmos Res 94(2):338–344. doi:10.1016/j.atmosres.2009.06.008

    Article  Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models. Tellus 47B:281–200. doi:10.1034/j.1600-0889.47.issue3.1.x

    Google Scholar 

  • Boucher O, Rodhe H (1994) The sulfate-CCN-cloud albedo effect, a sensitivity study. Rep. CM-83, 20 pp., Department of Meteorology, Stockholm University, Stockholm

  • Cao GL, Zhang XY, Zheng FC (2006) Inventory of black carbon and organic carbon emissions from China. Atmos Environ 40:6516–6527. doi:10.1016/j.atmosenv.2006.05.070

    Article  Google Scholar 

  • Chang LS, Park SU (2004) Direct radiative forcing due to anthropogenic aerosols in East Asia during April 2001. Atmos Environ 38:4467–4482. doi:10.1016/j.atmosenv.2004.05.006

    Article  Google Scholar 

  • Chen C, Cotton WR (1987) The physics of the marine stratocumulus-caped mixed layer. J Atmos Sci 44:2951–2977. doi:10.1175/1520-0469(1987)044<2951:TPOTMS>2.0.CO;2

    Article  Google Scholar 

  • Chen Y, Penner JE (2005) Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos Chem Phys 5:2935–2948

    Article  Google Scholar 

  • Chuang CC, Penner JE, Prospero JM, Grant KE, Rau GH, Kawamoto K (2002) Cloud susceptibility and the first aerosol indirect forcing: sensitivity to black carbon and aerosol concentrations. J Geophys Res 107(D21):4564. doi:10.1029/2000JD000215

    Article  Google Scholar 

  • Cook J, Highwood EJ (2004) Climate response to tropospheric absorbing aerosols in an intermediate general–circulation model. Q J R Meteorol Soc 130:175–191. doi:10.1256/qj.03.64

    Article  Google Scholar 

  • Cooke WF, Ramaswamy V, Kasibhatla P (2002) A general circulation model study of the global carbonaceous aerosol distribution. J Geophys Res 107(D16):4279. doi:10.1029/2001JD001274

    Article  Google Scholar 

  • de Graaf M, Tilstra LG, Wang P, Stammes P (2012) Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. J Geophys Res 117:D07207. doi:10.1029/2011JD017160

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D, Cote J (2002) Downscaling ability of one-way nested regional climate models: the Big–Brother Experiment. Clim Dyn 18:627–646. doi:10.1007/s00382-001-0201-0

    Article  Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. In: Solomon S et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Ghan SJ, Chuang CC, Penner JE (1993) A parameterization of cloud droplet nucleation, part I, single aerosol type. Atmos Res 30:197–221

    Article  Google Scholar 

  • Giorgi F, Bi XQ (2000) A study of internal variability of a regional climate model. J Geophys Res 105:29,503–29,521. doi:10.1029/2000JD900269

    Article  Google Scholar 

  • Giorgi F, Bi X, Qian Y (2002) Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: a regional coupled climate-chemistry/aerosol model study. J Geophys Res 107(D20):4439. doi:10.1029/2001JD001066

    Article  Google Scholar 

  • Gultepe I, Isaac GA (1999) Scale effects on averaging cloud droplet and aerosol number concentrations: observations and models. J Clim 12:1268–1279, 10.1175/1520-0442(1999)012 < 1268:SEOAOC > 2.0.CO;2

    Article  Google Scholar 

  • Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Hill AA, Dobbie S (2008) The impact of aerosols on nonprecipitating marine stratocumulus. II: The semi–direct effect. Q J R Meteorol Soc 134:1155–1165

    Article  Google Scholar 

  • Huang Y, Chameides WL, Dickinson RE (2007) Direct and indirect effects of anthropogenic aerosols on regional precipitation over East Asia. J Geophys Res 112:D03212. doi:10.1029/2006JD007114

    Article  Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697. doi:10.1038/35055518

    Article  Google Scholar 

  • Jacobson MZ (2002) Control of fossil–fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res 107(D19):4410. doi:10.1029/2001JD001376

    Article  Google Scholar 

  • Jones A, Roberts DL, Slingo AA (1994) A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370:450–453

    Article  Google Scholar 

  • Kasten F (1969) Visibility in the prephase of condensation. Tellus 21:631–635

    Article  Google Scholar 

  • Khairoutdinov M, Kogan Y (2000) A new cloud physics parameterization in a large eddy simulation model of marine stratocumulus. Mon Wea Rev 128:229–243. doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2

    Article  Google Scholar 

  • Kiehl JT, Briegleb BP (1993) The radioactive roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260:311–314

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Tech Note NCAR/TN-420 + STR, Nat. Cent. for Atmos. Res., Boulder, CO, 152 pp

  • Kristjánsson JE (2002) Studies of the aerosol indirect effect from sulfate and black carbon aerosols. J Geophys Res 107(D15):4246. doi:10.1029/2001JD000887

    Article  Google Scholar 

  • Kristjánsson JE, Iversen T, Kirkevåg A, Seland Ø, Debernard J (2005) Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks. J Geophys Res 110:D24206. doi:10.1029/2005JD006299

    Article  Google Scholar 

  • Kuhlmann J, Quaas J (2010) How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos Chem Phys 10:4673–4688. doi:10.5194/acp-10-4673-2010

    Article  Google Scholar 

  • Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Lau K, Kim M, Kim K (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Li S, Wang TJ, Zhuang BL, Han Y (2009) Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv Atmos Sci 26(3):543–552. doi:10.1007/s00376-009-0543-9

    Article  Google Scholar 

  • Liao H, Seinfeld JH (2005) Global impacts of gas-phase chemistry aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J Geophys Res 110:D18208. doi:10.1029/2005JD005907

  • Liou KN, Ou SC (1989) The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective. J Geophys Res 94:8599–8606. doi:10.1029/JD094iD06p08599

    Article  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J Geophys Res 102:13,685–13,700. doi:10.1029/97JD00631

    Article  Google Scholar 

  • Lohmann U, Feichter J (2001) Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys Res Lett 28:159–161. doi:10.1029/2000GL012051

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi:10.5194/acp-5-715-2005

    Article  Google Scholar 

  • Lohmann U, Feichter J, Penner J, Leaitch R (2000) Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J Geophys Res 105:12,193–12,206. doi:10.1029/1999JD901199

    Google Scholar 

  • Lohmann U, Stier P, Hoose C, Ferrachat S, Kloster S, Roeckner E, Zhang J (2007) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos Chem Phys 7:3425–3446. doi:10.5194/acp-7-3425-2007

    Article  Google Scholar 

  • Lohmann U, Rotstayn L, Storelvmo T, Jones A, Menon S, Quaas J, Ekman AML, Koch D, Ruedy R (2010) Total aerosol effect: radiative forcing or radiative flux perturbation?. Atmos Chem Phys 10:3235–3246. doi:10.5194/acp-10-3235-2010

    Google Scholar 

  • Ma JH, Zheng YF, Zhang H (2007) The optical depth global distribution of black carbon aerosol and its possible reason analysis. Sci Meteorol Sin 27(5):549–556

    Google Scholar 

  • Martin GM, Johnson DW, Spice A (1994) The measurements and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51:1823–1842. doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2

    Article  Google Scholar 

  • Menéndez CG, Saulo AC, Li ZX (2001) Simulation of South America wintertime climate with a nesting system. Clim Dyn 17(2–3):219–231. doi:10.1007/s003820000107

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo YF (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi:10.1126/science.1075159

    Article  Google Scholar 

  • Misra V, Kanamitsu M (2004) Anomaly nesting: a methodology to downscale seasonal climate simulations from AGCMs. J Clim 17:3249–3262. doi:10.1175/1520-0442(2004)017<3249:ANAMTD>2.0.CO;2

    Article  Google Scholar 

  • Misra V, Dirmeyer PA, Kirtman BP (2003) Dynamic downscaling of regional climate over South America. J Clim 16:103–117. doi:10.1175/1520-0442(2003)016<0103:DDOSSO>2.0.CO;2

    Article  Google Scholar 

  • Penner JE, Quaas J, Storelvmo T, Takemura T, Boucher O, Guo H, Kirkevåg A, Kristjánsson JE, Seland Ø (2006) Model intercomparison of indirect aerosol effects. Atmos Chem Phys 6:3391–3405. doi:10.5194/acp-6-3391-2006

    Article  Google Scholar 

  • Peters K, Quaas J, Bellouin N (2011) Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean. Atmos Chem Phys 11:1393–1404. doi:10.5194/acp-11-1393-2011

    Article  Google Scholar 

  • Qian Y, Leung LR, Ghan SJ, Giorgi F (2003) Regional climate effects of aerosols over China: modeling and observation. Tellus 55B:914–934. doi:10.1046/j.1435-6935.2003.00070.x

    Google Scholar 

  • Qin SG, Tang J, Wen YP (2001) Black carbon and its importance in climate change studies. Meteorol Monogr 27(11):3–7

    Google Scholar 

  • Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjánsson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevåg A, Iversen T, Seland Ø, Easter R, Ghan SJ, Rasch PJ, Morrison H, Lamarque JF, Iacono MJ, Kinne S, Schulz M (2009) Aerosol indirect effects- general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717. doi:10.5194/acp-9-8697-2009

    Article  Google Scholar 

  • Quaas J, Stevens B, Stier P, Lohmann U (2010) Interpreting the cloud cover aerosol optical depth relationship found in satellite data using a general circulation model. Atmos Chem Phys 10:6129–6135. doi:10.5194/acp-10-6129-2010

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227. doi:10.1038/ngeo156

    Article  Google Scholar 

  • Randles CA, Ramaswamy V (2008) Absorbing aerosols over Asia: a geophysical fluid dynamics laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J Geophys Res 113:D21203. doi:10.1029/2008JD010140

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625

    Article  Google Scholar 

  • Roberts DL, Jones A (2004) Climate sensitivity to black carbon aerosol from fossil fuel combustion. J Geophys Res 109:D16202. doi:10.1029/2004JD004676

    Article  Google Scholar 

  • Schult I, Feichter J, Cooke WF (1997) Effect of black carbon and sulphate aerosols on the global radiation budget. J Geophys Res 102:30,107–30,117. doi:10.1029/97JD01863

    Article  Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613. doi:10.1038/nature08281

    Article  Google Scholar 

  • Stier P, Feichter J, Kloster S, Vignati E, Wilson J (2006) Emission-induced nonlinearities in the global aerosol system: results from the ECHAM5-HAM aerosol-climate model. J Climate 19:3845–3862

    Article  Google Scholar 

  • Streets DG, Gupta S, Waldhoff ST, Wang MQ, Bond TC, Bo YY (2001) Black carbon emissions in China. Atmos Environ 35:4281–4296. doi:10.1016/S1352-2310(01)00179-0

    Article  Google Scholar 

  • Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res 110:D02202. doi:10.1029/2004JD005029

    Article  Google Scholar 

  • Tang J, Wen YP, Zhou LX (1999) Observational study of black carbon in clean air area of western China. Q J Appl Meteorol 10:160–170

    Google Scholar 

  • Tripoli GJ, Cotton WR (1980) A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J Appl Meteorol 19:1037–1063. doi:10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2

    Article  Google Scholar 

  • Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256. doi:10.1016/0004-6981(74)90004-3

    Article  Google Scholar 

  • Wang C (2004) A modeling study on the climate impacts of black carbon aerosols. J Geophys Res 109:D03106. doi:10.1029/2003JD004084

    Article  Google Scholar 

  • Wang M, Penner JE (2009) Aerosol indirect forcing in a global model with particle nucleation. Atmos Chem Phys 9:239–260. doi:10.5194/acp-9-239-2009

    Article  Google Scholar 

  • Wang TJ, Min JZ, Xu YF, Lam KS (2003) Seasonal variations of anthropogenic sulfate aerosol and direct radiative forcing over China. Meteorol Atmos Phys 84:185–198. doi:10.1007/s00703-002-0581-7

    Article  Google Scholar 

  • Wang TJ, Xie M, Gao LJ, Yang HM (2004) Development and preliminary application of a coupled regional climate-chemistry model system. J Nanjing Univ 40(6):711–727

    Google Scholar 

  • Wang T, Li S, Shen Y, Deng J, Xie M (2010) Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res 115:D00K26. doi:10.1029/2009JD013264

    Article  Google Scholar 

  • Wilcox EM (2010) Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol. Atmos Chem Phys 10:11769–11777. doi:10.5194/acp-10-11769-2010

    Article  Google Scholar 

  • Wu J, Fu CB (2005) Simulation research of distribution transportation and radiative effects of black carbon aerosol in recent five spring seasons over East Asia region. Chin J Atmos Sci 29(1):111–119

    Google Scholar 

  • Wu J, Fu C, Xu Y, Tang JP, Wang W, Wang Z (2008) Simulation of direct effects of black carbon aerosol on temperature and hydrological cycle in Asia by a regional climate model. Meteorol Atmos Phys 100:179–193. doi:10.1007/s00703-008-0302-y

    Article  Google Scholar 

  • Xie X, Liu X (2011) Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems. J Geophys Res 116:D06202. doi:10.1029/2010JD014598

    Article  Google Scholar 

  • Xu L, Wang YQ, Chen ZL, Luo Y, Ren WH (2006) Progress of black carbon aerosol research I: emission, removal and concentration. Adv Earth Sci 21(4):352–360

    Google Scholar 

  • Zhai PM, Zhang XB, Wan H, Pan XH (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate 18:1096–1108

    Article  Google Scholar 

  • Zhang Y, Gao QX (1997) A study on the radiative effect of sulfate and soot aerosols. Q J Appl Meteorol 8(suppl 1):87–91. doi:10.1007/s00376-009-0057-5

    Google Scholar 

  • Zhang MG, Xu YF, Zhang RJ, Han ZW (2005) Emission and concentration distribution of black carbon aerosol in East Asia during springtime. Chin J Geophys 48(1):46–51

    Google Scholar 

  • Zhang XY, Wang YQ, Zhang XC, Guo W, Gong SL (2008) Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res 113:D14111. doi:10.1029/2007JD009525

    Article  Google Scholar 

  • Zhang H, Wang ZL, Guo PW, Wang ZZ (2009a) A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci 26(1):57–66. doi:10.1007/s00376-009-0057-5

    Article  Google Scholar 

  • Zhang Q, Streets DG, Carmichael GR, He K, Huo H et al (2009b) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. doi:10.5194/acp-9-5131-2009

    Article  Google Scholar 

  • Zhang XY, Wang YQ, Niu T, Zhang XC, Gong SL, Zhang YM, Sun TY (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 12:779–799. doi:10.5194/acp-12-779-2012

    Article  Google Scholar 

  • Zhuang BL, Wang TJ, Li S (2009) First indirect radiative forcing of black carbon aerosol and its effect on regional climate of China. Plateau Meteorol 28(5):1095–1103

    Google Scholar 

  • Zhuang BL, Liu L, Shen FH, Wang TJ, Han Y (2010) Semidirect radiative forcing of internal mixed black carbon cloud droplet and its regional climatic effect over China. J Geophys Res 115:D00K19. doi:10.1029/2009JD013165

    Article  Google Scholar 

  • Zhuang BL, Jiang F, Wang TJ, Li S, Zhu B (2011) Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China. Theor Appl Climatol 104(3–4):301–312. doi:10.1007/s00704-010-0341-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Development Program of China (2011CB403406 and 2010CB428503), the Young Scientists Fund of the National Natural Science Foundation of China (41205111), New Teachers’ Fund for Doctor Stations, Ministry of Education (20120091120031), the Fundamental Research Funds for the Central Universities (1127020701), and a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, B., Liu, Q., Wang, T. et al. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China. Theor Appl Climatol 114, 651–672 (2013). https://doi.org/10.1007/s00704-013-0862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0862-8

Keywords

Navigation