Skip to main content
Log in

A Matérn model of the spatial covariance structure of point rain rates

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. No. 55 in National Bureau of Standards Applied Mathematics Series. Superintendent of Documents, U.S. Government Printing Office, Washington, DC

  • Apanasovich TV, Genton MG, Sun Y (2012) A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. J Am Stat Assoc 107:180–193

    Article  Google Scholar 

  • Bell TL (1987) A space–time stochastic model of rainfall for satellite remote-sensing studies. J Geophys Res 92:9631–9643. doi:10.1029/JD092iD08p09631

    Article  Google Scholar 

  • Bell TL, Kundu PK (1996) A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model. J Clim 9:1251–1268

    Article  Google Scholar 

  • Bell TL, Kundu PK (2003) Comparing satellite rainfall estimates with rain gauge data: optimal strategies suggested by a spectral model. J Geophys Res 108:4121. doi:10.1029/2002JD002641

    Article  Google Scholar 

  • Bruno F, Cocchi D, Greco F, Scardovi E (2014) Spatial reconstruction of rainfall fields from rain gauge and radar data. Stoch Environ Res Risk Assess 28:1235–1245

    Article  Google Scholar 

  • Chakraborty A, De S, Bowman K, Sang H, Genton MG, Mallick B (2014) An adaptive spatial model for precipitation data from multiple satellites over large regions. Stat Comput (in press)

  • Essenwanger OM (1985) General climatology: elements of statistical analysis, vol 1B., World survey of climatology, Elsevier, Amsterdam

    Google Scholar 

  • Genton MG, Kleiber W (2014) Cross-covariance functions for multivariate geostatistics. Stat Sci (in press)

  • Gneiting T (2004) Stochastic models that separate fractal dimension and the hurst effect. SIAM Rev 46:269–282

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105:1167–1177

    Article  CAS  Google Scholar 

  • Guttorp P, Gneiting T (2006) Studies in the history of probability and statistics XLIX: on the Matérn correlation family. Biometrika 93:989–995. doi:10.1093/biomet/93.4.989

    Article  Google Scholar 

  • Habib E, Krajewski WF, Ciach GJ (2001) Estimation of rainfall interstation correlation. J Hydrometeorol 2:621–629

    Article  Google Scholar 

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403–410

    Article  Google Scholar 

  • Krajewski WF, Ciach GJ, McCollum JR, Bacotiu C (2000) Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J Appl Meteorol 39:1071–1086

    Article  Google Scholar 

  • Kundu PK, Siddani RK (2011) Scale dependence of spatiotemporal intermittence of rain. Water Resour Res 47:318–340. doi:10.1029/2010WR010070

    Article  Google Scholar 

  • Laughlin CR (1981) On the effect of temporal sampling on the observation of mean rainfall. In: Atlas D, Thiele OW (eds) Precipitation measurement from space. National Aeronautics and Space Administration, Greenbelt, pp D59–66

    Google Scholar 

  • Li B, Murthi A, Bowman K, North G, Genton MG, Sherman M (2009) Statistical tests of Taylor’s hypothesis: an application to precipitation fields. J Hydrometeorol 10:254–265

    Article  Google Scholar 

  • Marchenko YV, Genton MG (2010) Multivariate log-skew-elliptical distributions with applications to precipitation data. Environmetrics 21:318–340

    Article  Google Scholar 

  • Matérn B (1986) Spatial variation. In: Lecture notes in statistics, vol. 36, 2nd edn. Springer, Berlin

  • North GR, Nakamoto S (1989) Formalism for comparing rain estimation designs. J Atmos Oceanic Technol 6:985–992

    Article  Google Scholar 

  • North GR, Wang J, Genton MG (2011) Correlation models for temperature fields. J Clim 24:5850–5862. doi:10.1175/2011JCLI4199.1

    Article  Google Scholar 

  • Oliveira VD (2004) A simple model for spatial rainfall fields. Stoch Environ Res Risk Assess 18:131–140

    Article  Google Scholar 

  • Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14:384–411

    Article  Google Scholar 

  • Tokay A, Bashor PG, McDowell VL (2010) Comparison of rain gauge measurements in the mid-Atlantic region. J Hydrometeorol 11:553–565. doi:10.1175/2009JHM1137.1

    Article  Google Scholar 

Download references

Acknowledgments

The research in this article was partially supported by Award No. KUSC1-016-04 made by King Abdullah University of Science and Technology (KAUST) and by the Spanish Ministry of Science and Innovation (Project MTM2011-22664) which is co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Genton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Bowman, K.P., Genton, M.G. et al. A Matérn model of the spatial covariance structure of point rain rates. Stoch Environ Res Risk Assess 29, 411–416 (2015). https://doi.org/10.1007/s00477-014-0923-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0923-2

Keywords

Navigation