Skip to main content
Log in

Using spatial multilevel regression analysis to assess soil type contextual effects on neural tube defects

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The rate of neural tube defects (NTDs) in Shanxi Province is the highest world widely. Both human and environmental factors can induce NTDs, but various studies ignored contextual effects. This research examines whether there are significant soil type contextual effects on the rate of NTDs. A spatial two-level regression model is used to quantify the magnitude of contextual effects. Spatial autocorrelated errors structure is used to control autocorrelation of residuals. The results suggest that the spatial multilevel model fit the data better than non-spatial multilevel models. Our findings indicate that there are significant soil type contextual effects on the rate of NTDs, even after taking into account of fertilizer and net income. More attentions should be focused on how characteristics of each soil type may affect the rates of NTDs in further studies, which is a relevant issue for understanding etiology of NTDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anselin L, Syabri I et al (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22

    Article  Google Scholar 

  • Bondi L, Bradford M (1990) Applications of multi-level modelling to geography. Area 22(3):256–263

    Google Scholar 

  • Brender JD, Suarez L et al (2006) Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring. Environ Res 101(1):132–139

    Article  CAS  Google Scholar 

  • Cabrera RM, Hill DS et al (2004) Investigations into the etiology of neural tube defects. Birth Defects Res C 72(4):330–344

    Article  CAS  Google Scholar 

  • Chaix B, Merlo J et al (2009) Neighbourhoods in eco-epidemiologic research: delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Soc Sci Med 69(9):1306–1310

    Article  Google Scholar 

  • Detrait ER, George TM et al (2005) Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol 27(3):515–524

    Article  CAS  Google Scholar 

  • Diez-Roux AV (1998) Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health 88(2):216–222

    Article  CAS  Google Scholar 

  • Diez-Roux AV (2000) Multilevel analysis in public health research. Annu Rev Public Health 21(1):171–192

    Article  CAS  Google Scholar 

  • DiPrete TA, Forristal JD (1994) Multilevel models: methods and substance. Annu Rev Sociol 20(1):331–357

    Article  Google Scholar 

  • Dolk H, Vrijheid M (2003) The impact of environmental pollution on congenital anomalies. Br Med Bull 68(1):25–45

    Article  CAS  Google Scholar 

  • Drukker D, Prucha I (2010) On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Technical Report, Department of Economics, University of Maryland

  • Drukker D, Prucha I et al (2011) A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables. Stata J 1(1):1–13

    Google Scholar 

  • Duncan C, Jones K et al (1996) Health-related behaviour in context: a multilevel modelling approach. Soc Sci Med 42(6):817–830

    Article  CAS  Google Scholar 

  • Frey L, Hauser WA (2003) Epidemiology of neural tube defects. Epilepsia 44:4–13

    Article  Google Scholar 

  • Garry VF, Harkins ME et al (2002) Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect 110(Suppl 3):441–449

    Article  Google Scholar 

  • Goldstein H (2011) Multilevel statistical models, 4th edn. Wiley, Chichester

    Google Scholar 

  • Goldstein H, Rasbash J et al (1993) A multilevel analysis of school examination results [1]. Oxf Rev Educ 19(4):425–433

    Article  Google Scholar 

  • Goldstein H, Yang M et al (2000) Meta-analysis using multilevel models with an application to the study of class size effects. J R Stat Soc C 49(3):399–412

    Article  Google Scholar 

  • Gu X, Lin L et al (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A 79(10):702–707

    Article  CAS  Google Scholar 

  • Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heeren GA, Tyler J et al (2003) Agricultural chemical exposures and birth defects in the Eastern Cape Province, South Africa: a case–control study. Environ Health 2(1):11

    Article  Google Scholar 

  • Hu Y, Wang J et al (2011) Mapping under-five mortality in the Wenchuan earthquake using hierarchical Bayesian modeling. Int J Environ Health Res 21(5):364–371

    Article  Google Scholar 

  • Huang J, Wu J et al (2011) Effect of exposure to trace elements in the soil on the prevalence of neural tube defects in a high-risk area of China. Biomed Environ Sci 24(2):94–101

    CAS  Google Scholar 

  • Jones K (1991) Specifying and estimating multi-level models for geographical research. Trans Inst Br Geogr 16(2):148–159

    Article  Google Scholar 

  • Kibar Z, Capra V et al (2007) Toward understanding the genetic basis of neural tube defects. Clin Genet 71(4):295–310

    Article  CAS  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673

    Article  Google Scholar 

  • Leyland AH, Groenewegen PP (2003) Multilevel modelling and public health policy. Scand J Public Health 31(4):267–274

    Article  Google Scholar 

  • Li X et al (2006a) A geological analysis for the environmental cause of human birth defects based on GIS. Toxicol Environ Chem 88(3):551–559

    Article  CAS  Google Scholar 

  • Li Z, Ren A et al (2006b) A population-based case–control study of risk factors for neural tube defects in four high-prevalence areas of Shanxi Province, China. Paediatr Perinat Epidemiol 20(1):43–53

    Article  Google Scholar 

  • Li X, Wang J et al (2007) The indication effect of soil in environmental risk assessment of birth defects. Res Environ Sci 20(6):21–26 (in Chinese)

    CAS  Google Scholar 

  • Liao Y, Wang J et al (2010a) Risk assessment of human neural tube defects using a Bayesian belief network. Stoch Environ Res Risk Assess 24(1):93–100

    Article  Google Scholar 

  • Liao Y, Wang J et al (2010b) Spatial analysis of neural tube defects in a rural coal mining area. Int J Environ Health Res 20(6):439–450

    Article  Google Scholar 

  • Lynch JW, Smith GD et al (2000) Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. BMJ 320(7243):1200–1204

    Article  CAS  Google Scholar 

  • Maloney-Krichmar D, Preece J (2005) A multilevel analysis of sociability, usability, and community dynamics in an online health community. ACM Trans Comput Hum Interact 12(2):201–232

    Article  Google Scholar 

  • Mauny F, Viel J et al (2004) Multilevel modelling and malaria: a new method for an old disease. Int J Epidemiol 33(6):1337–1344

    Article  CAS  Google Scholar 

  • Merlo J (2003) Multilevel analytical approaches in social epidemiology: measures of health variation compared with traditional measures of association. J Epidemiol Community Health 57(8):550–552

    Article  CAS  Google Scholar 

  • Merlo J, Chaix B et al (2005a) A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health 59(6):443–449

    Article  Google Scholar 

  • Merlo J, Yang M et al (2005b) A brief conceptual tutorial on multilevel analysis in social epidemiology: investigating contextual phenomena in different groups of people. J Epidemiol Community Health 59(9):729–736

    Article  Google Scholar 

  • Merlo J, Ohlsson H et al (2009) Individual and collective bodies: using measures of variance and association in contextual epidemiology. J Epidemiol Community Health 63(12):1043–1048

    Google Scholar 

  • Reijneveld SA (2002) Neighbourhood socioeconomic context and self reported health and smoking: a secondary analysis of data on seven cities. J Epidemiol Community Health 56(12):935–942

    Article  CAS  Google Scholar 

  • Riva M, Gauvin L et al (2009) Disentangling the relative influence of built and socioeconomic environments on walking: the contribution of areas homogenous along exposures of interest. Soc Sci Med 69(9):1296–1305

    Article  Google Scholar 

  • Robinson W (1950) Ecological correlations and the behavior of individuals. Am Sociol Rev 15(2):337–341

    Google Scholar 

  • Schwartz S (1994) The fallacy of the ecological fallacy: the potential misuse of a concept and the consequences. Am J Public Health 84(5):819–824

    Article  CAS  Google Scholar 

  • Sever L, Lynberg MC et al (1993) The impact of congenital malformations on public health. Teratology 48(6):547–549

    Article  CAS  Google Scholar 

  • Shrout PE (1998) Measurement reliability and agreement in psychiatry. Stat Methods Med Res 7(3):301–317

    Article  CAS  Google Scholar 

  • Silver E (2000) Race, neighborhood disadvantage, and violence among persons with mental disorders: the importance of contextual measurement. Law Hum Behav 24(4):449–456

    Article  CAS  Google Scholar 

  • StataCorp (2011) Stata statistical software: release 12. StataCorp LP, College Station

    Google Scholar 

  • Steele F (2008) Module 3: multiple regression concepts. LEMMA VLE, University of Bristol, Centre for Multilevel Modelling. http://www.bristol.ac.uk/cmm/

  • Steele F, Vignoles A et al (2007) The effect of school resources on pupil attainment: a multilevel simultaneous equation modelling approach. J R Stat Soc A 170(3):801–824

    Article  Google Scholar 

  • Subramanian SV, Jones K et al (2009) Revisiting Robinson: the perils of individualistic and ecologic fallacy. Int J Epidemiol 38(2):342–360

    Article  CAS  Google Scholar 

  • Sundquist K, Winkleby M et al (2004) Neighborhood socioeconomic environment and incidence of coronary heart disease: a follow-up study of 25,319 women and men in Sweden. Am J Epidemiol 159(7):655–662

    Article  Google Scholar 

  • Turner RM, Omar RZ et al (2000) A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med 19(24):3417–3432

    Article  CAS  Google Scholar 

  • van der Put NMJ, van Straaten HWM et al (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med 226(4):243–270

    Google Scholar 

  • Von Korff M, Koepsell T et al (1992) Multi-level analysis in epidemiologic research on health behaviors and outcomes. Am J Epidemiol 135(10):1077–1082

    Google Scholar 

  • Wang JF, Li XH et al (2010) Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int J Geogr Inf Sci 24(1):107–127

    Article  CAS  Google Scholar 

  • Werneck GL, Maguire JH (2002) Spatial modeling using mixed models: an ecologic study of visceral leishmaniasis in Teresina, Piauí State, Brazil. Cad Saúde Pública 18:633–637

    Article  Google Scholar 

  • Wight RG, Cummings JR et al (2008) A multilevel analysis of urban neighborhood socioeconomic disadvantage and health in late life. Soc Sci Med 66(4):862–872

    Article  Google Scholar 

  • Wu J, Wang J et al (2004) Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health 4(1):23

    Article  Google Scholar 

  • Wu J, Chen G et al (2011) Arsenic levels in the soil and risk of birth defects: a population-based case–control study using GIS technology. J Environ Health 74(4):20–25

    CAS  Google Scholar 

  • Xiao KZ, Zhang ZY et al (1990) Central nervous system congenital malformations, especially neural tube defects in 29 provinces, metropolitan cities and autonomous regions of China: Chinese Birth Defects Monitoring Program. Int J Epidemiol 19(4):978–982

    Article  CAS  Google Scholar 

  • Yasui Y, Lele S (1997) A regression methods for spatial disease rates: an estimating function approach. J Am Stat Assoc 92:21–32

    Article  Google Scholar 

  • Yin Z, Xu W et al (2011) A population-based case–control study of risk factors for neural tube defects in Shenyang, China. Child’s Nerv Syst 27(1):149–154

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NSFC (41023010), MOST (2012CB955503; 2012ZX10004-201; 201202006; 2011AA120305) and CAS (XDA05090102) Grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Wang or Xiaoying Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Z., Wang, J., Liao, Y. et al. Using spatial multilevel regression analysis to assess soil type contextual effects on neural tube defects. Stoch Environ Res Risk Assess 27, 1695–1708 (2013). https://doi.org/10.1007/s00477-013-0707-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0707-0

Keywords

Navigation