, Volume 103, Issue 1 Supplement, pp 121-129
Date: 23 Nov 2008

Network “Rodent-borne pathogens” in Germany: longitudinal studies on the geographical distribution and prevalence of hantavirus infections

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Hantavirus infections are known in Germany since the 1980s. While the overall antibody prevalence against hantaviruses in the general human population was estimated to be about 1–2%, an average of 100–200 clinical cases are recorded annually. In the years 2005 and 2007 in particular, a large increase of the number of human hantavirus infections in Germany was observed. The most affected regions were located in the federal states of Baden-Wuerttemberg, Bavaria, North Rhine Westphalia, and Lower Saxony. In contrast to the well-documented situation in humans, the knowledge of the geographical distribution and frequency of hantavirus infections in their rodent reservoirs as well as any changes thereof was very limited. Hence, the network “Rodent-borne pathogens” was established in Germany allowing synergistic investigations of the rodent population dynamics, the prevalence and evolution of hantaviruses and other rodent-associated pathogens as well as their underlying mechanisms in order to understand their impact on the frequency of human infections. A monitoring of hantaviruses in rodents from endemic regions (Baden-Wuerttemberg, Bavaria, North Rhine Westphalia, Lower Saxony) and regions with a low number of human cases (Mecklenburg Western-Pomerania, Brandenburg, Saxony, Saxony-Anhalt) was initiated. Within outbreak regions, a high prevalence of Puumala virus (PUUV) was detected in bank voles. Initial longitudinal studies in North Rhine Westphalia (city of Cologne), Bavaria (Lower Bavaria), and Lower Saxony (rural region close to Osnabrück) demonstrated a continuing presence of PUUV in the bank vole populations. These longitudinal studies will allow conclusions about the evolution of hantaviruses and other rodent-borne pathogens and changes in their distribution, which can be used for a risk assessment of human infections. This may become very important in order to evaluate changes in the epidemiology of rodent-borne pathogens in the light of expected global climate changes in the future.