Skip to main content

Advertisement

Log in

Characteristic diffusion tensor tractography in multiple system atrophy with predominant cerebellar ataxia and cortical cerebellar atrophy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The objective of this study is to determine whether diffusion tensor imaging (DTI) tractography analysis is a potential method for differentiating cerebellar ataxia patients with multiple system atrophy with predominant cerebellar ataxia (MSA-C) and cortical cerebellar atrophy (CCA). Forty-one MSA-C patients (62.7 ± 8.1 years old, mean ± SD) and age- and gender-matched 15 CCA patients (63.0 ± 8.6 years old) were examined. Tractography was performed using the DTI track module provided in the MedINRIA version 1.9.4, and regions of interest were drawn manually to reconstruct an efferent fiber tract and two afferent fiber tracts via the cerebellum. Compared with CCA, MSA-C patients showed significant declines of fractional anisotropy (FA) values of afferent 1 and 2 (p < 0.01, respectively) and a significant increase of the radial diffusivity (RD) value in afferent 1 (p < 0.05). Receiver-operator characteristic curve analysis showed 85.7 % sensitivity and 75.0 % specificity of FA values in afferent 1 (cutoff value 0.476). Linear regressions showed strong correlations between FA value and disease duration in CCA patients (efferent 1, r = −0.466; afferent 2, r = −0.543; both p < 0.05), and between the FA value and the ratio of the standardized scale for the assessment and rating of ataxia (SARA)/disease duration in MSA-C patients (afferent 1, r = −0.407; p < 0.01). The present DTI tractography newly showed that the FA values of two afferent fiber tracts showed significant declines in MSA-C patients, and afferent 1 showed good diagnostic sensitivity and specificity. When combining the FA values of efferent 1 with disease duration, the present DTI tractography analysis could be useful for differentiating MSA-C and CCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163(1):94–98

    Article  CAS  PubMed  Google Scholar 

  2. Tsuji S, Onodera O, Goto J, Nishizawa M, Study Group on Ataxic D (2008) Sporadic ataxias in Japan–a population-based epidemiological study. Cerebellum 7(2):189–197

    Article  CAS  PubMed  Google Scholar 

  3. Wakabayashi K, Takahashi H (2006) Cellular pathology in multiple system atrophy. Neuropathology 26(4):338–345

    Article  PubMed  Google Scholar 

  4. Schrag A, Kingsley D, Phatouros C, Mathias CJ, Lees AJ, Daniel SE et al (1998) Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psychiatry 65(1):65–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Abele M, Burk K, Schols L, Schwartz S, Besenthal I, Dichgans J et al (2002) The aetiology of sporadic adult-onset ataxia. Brain 125(Pt 5):961–968

    Article  CAS  PubMed  Google Scholar 

  6. Klockgether T (2012) Sporadic adult-onset ataxia of unknown etiology. Handb Clin Neurol 103:253–262

    Article  PubMed  Google Scholar 

  7. Kanazawa I, Kwak S, Sasaki H, Mizusawa H, Muramoto O, Yoshizawa K et al (1985) Studies on neurotransmitter markers and neuronal cell density in the cerebellar system in olivopontocerebellar atrophy and cortical cerebellar atrophy. J Neurol Sci 71(2–3):193–208

    Article  CAS  PubMed  Google Scholar 

  8. Baloh RW, Yee RD, Honrubia V (1986) Late cortical cerebellar atrophy. Clinical and oculographic features. Brain 109(Pt 1):159–180

    Article  PubMed  Google Scholar 

  9. Tha KK, Terae S, Yabe I, Miyamoto T, Soma H, Zaitsu Y et al (2010) Microstructural white matter abnormalities of multiple system atrophy: in vivo topographic illustration by using diffusion-tensor MR imaging. Radiology 255(2):563–569

    Article  PubMed  Google Scholar 

  10. Foerster BR, Carlos RC, Dwamena BA, Callaghan BC, Petrou M, Edden RA et al (2014) Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol 1(2):107–114

    Article  PubMed Central  PubMed  Google Scholar 

  11. Marek M, Paus S, Allert N, Madler B, Klockgether T, Urbach H et al (2015) Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol 262(1):54–58

    Article  CAS  PubMed  Google Scholar 

  12. Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L et al (2008) Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 70(4):1002–1010

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ito M, Watanabe H, Kawai Y, Atsuta N, Tanaka F, Naganawa S et al (2007) Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J Neurol Neurosurg Psychiatry 78(7):722–728

    Article  PubMed Central  PubMed  Google Scholar 

  14. Prakash N, Hageman N, Hua X, Toga AW, Perlman SL, Salamon N (2009) Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. Neuroimage 47(Suppl 2):T72–T81

    Article  PubMed  Google Scholar 

  15. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fujiwara S, Sasaki M, Kanbara Y, Inoue T, Hirooka R, Ogawa A (2008) Feasibility of 1.6-mm isotropic voxel diffusion tensor tractography in depicting limbic fibers. Neuroradiology 50(2):131–136

    Article  PubMed  Google Scholar 

  17. Toussaint N, Souplet JC, Fillard P (2007) MedINRIA: medical image navigation and research tool by INRIA. In: MICCAI’07 Workshop on Interaction in medical image analysis and visualization. Brisbane, Australia

  18. Shrivastava A (2007) The hot cross bun sign. Radiology 245(2):606–607

    Article  PubMed  Google Scholar 

  19. Ota S, Tsuchiya K, Anno M, Niizato K, Akiyama H (2008) Distribution of cerebello-olivary degeneration in idiopathic late cortical cerebellar atrophy: clinicopathological study of four autopsy cases. Neuropathology 28(1):43–50

    Article  PubMed  Google Scholar 

  20. Tsuchiya K, Ozawa E, Saito F, Irie H, Mizutani T (1994) Neuropathology of late cortical cerebellar atrophy in Japan: distribution of cerebellar change on an autopsy case and review of Japanese cases. Eur Neurol 34(5):253–262

    Article  CAS  PubMed  Google Scholar 

  21. Mascalchi M (2008) Spinocerebellar ataxias. Neurol Sci 29(Suppl 3):311–313

    Article  PubMed  Google Scholar 

  22. Hesseltine SM, Law M, Babb J, Rad M, Lopez S, Ge Y et al (2006) Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol 27(6):1189–1193

    CAS  PubMed  Google Scholar 

  23. Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12(2):133–147

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson C, Bloch KM, Brockstedt S, Latt J, Widner H, Larsson EM (2007) Tracking the neurodegeneration of parkinsonian disorders–a pilot study. Neuroradiology 49(2):111–119

    Article  CAS  PubMed  Google Scholar 

  25. Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C et al (2000) Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 107(2):132–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants-in-Aid for Scientific Research (B) 25293202, (C) 15K09316 and Challenging Research 15K15527 and Young Research 15K21181, and by Grants-in-Aid from the Research Committees (Mizusawa H, Nakashima K, Nishizawa M, Sasaki H, and Aoki M) from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Abe.

Ethics declarations

Conflicts of interest

The authors declare no financial or other conflict of interest.

Ethical standards

Ethical permission for this study was provided by the Ethics Committee on Epidemiological Studies of the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences (Approval #304), and written informed consent was obtained from all participants prior to enrollment in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Hishikawa, N., Sato, K. et al. Characteristic diffusion tensor tractography in multiple system atrophy with predominant cerebellar ataxia and cortical cerebellar atrophy. J Neurol 263, 61–67 (2016). https://doi.org/10.1007/s00415-015-7934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7934-x

Keywords

Navigation