Skip to main content

Advertisement

Log in

Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Carbonatites host some unique ore deposits, especially rare earth elements (REE). Hydrothermal fluids have been proposed to play a significant role in the concentration and transport of REE and other rare metals in carbonatites, but experimental constraints on fluid–melt equilibria in carbonatitic systems are sparse. Here we present an experimental study of trace element (REE, Ba, Sr, Mo and W) partitioning between hydrous fluids and carbonatitic melts, bearing on potential hydrothermal activity associated with carbonatite ore-forming systems. The experiments were performed on mixtures of synthetic carbonate melts and aqueous fluids at 700–800 °C and 100–200 MPa using rapid-quench cold-seal pressure vessels and double-capsule assemblages with diamond traps for analyzing fluid precipitates in the outer capsule. Starting mixtures were composed of Ca, Mg and Na carbonates spiked with trace elements. Small amounts of F or Cl were added to some of the mixtures to study the effects of halogens on the element distribution. The results show that REE, Ba, Sr, Mo and W all preferentially partition into carbonatite melt and have fluid–melt distribution coefficients (D f/m) below unity. The REE partitioning is slightly dependent on the major element (Ca, Mg and Na) composition of the starting mixtures, and it is influenced by temperature, pressure, and the presence of halogens. The fluid–melt D values of individual REE vary from 0.02 to 0.15 with \(D_{\text{Lu}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) being larger than \(D_{\text{La}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) by a factor of 1.1–2. The halogens F and Cl have strong and opposite effects on the REE partitioning. Fluid–melt D REE are about three times higher in F-bearing compositions and ten times lower in Cl-bearing compositions than in halogen-free systems. \(D_{\text{W}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) and \(D_{\text{Mo}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) are the highest among the studied elements and vary between 0.6 and 0.7; \(D_{\text{Ba}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) is between 0.05 and 0.09, whereas \(D_{\text{Sr}}^{{{{\text{f}} \mathord{\left/ {\vphantom {{\text{f}} {\text{m}}}} \right. \kern-0pt} {\text{m}}}}}\) is at about 0.01–0.02. The results imply that carbonatite-related REE deposits were probably formed by fractional crystallization of carbonatitic melts rather than from exsolved hydrothermal fluids. The same appears to be true for a carbonatite-related Mo deposit recently discovered in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade FRD, Möller P, Lüders V, Dulski P, Gilg HA (1999) Hydrothermal rare earth elements mineralization in the Barra do Itapirapua carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chem Geol 155:91–113

    Article  Google Scholar 

  • Audétat A (2010) Source and evolution of molybdenum in the porphyry-Mo(–Nb) deposit at Cave Peak, Texas. J Petrol 51:1739–1760

    Article  Google Scholar 

  • Ayers JC, Eggler DH (1995) Partitioning of elements between silicate melt and H2O-NaCl fluids at 1.5 and 2.0 GPa pressure: implications for mantle metasomatism. Geochim Cosmochim Acta 59:4237–4246

    Article  Google Scholar 

  • Bai TB, Koster van Groos AF (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim Cosmochim Acta 63:1117–1131

    Article  Google Scholar 

  • Borchert M, Wilke M, Schmidt C, Rickers K (2009) Partitioning and equilibration of Rb and Sr between silicate melts and aqueous fluids. Chem Geol 259:39–47

    Article  Google Scholar 

  • Borchert M, Wilke M, Schmidt C, Cauzid J, Tucoulou R (2010) Partitioning of Ba, La, Yb and Y between haplogranitic melts and aqueous solutions: an experimental study. Chem Geol 276: 225–240

    Article  Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48:373–380

    Article  Google Scholar 

  • Canil D, MacKenzie J (2011) Fluid/melt partitioning of Re, Mo, W, Tl and Pb in the system haplobasalt–H2O–Cl and the volcanic degassing of trace heavy metals. J Volcanol Geotherm Res 204:57–65

    Article  Google Scholar 

  • Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Miner 46:779–806

    Article  Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements 8:333–340

    Article  Google Scholar 

  • Chen W, Kamenetsky V, Simonetti A (2013) Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat Commun 4:2687

    Google Scholar 

  • Cullers RL, Medaris LG (1973) Experimental studies of the distribution of rare-earth as trace elements among silicate minerals and liquids and water. Geochim Cosmochim Acta 37:1499–1512

    Article  Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Doroshkevich AG, Viladkar SG, Ripp GS, Burtseva MV (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can Miner 47:1105–1116

    Article  Google Scholar 

  • Eriksson SC (1989) Phalabowra: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Flynn RT, Burnham CW (1978) An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochim Cosmochim Acta 42:685–701

    Article  Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283

    Article  Google Scholar 

  • Genge MJ, Jones AP, Price GD (1995) An infrared and Raman study of carbonate glasses: implications for the structure of carbonatite magmas. Geochim Cosmochim Acta 59:927–937

    Article  Google Scholar 

  • Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 59:4329–4350

    Article  Google Scholar 

  • Halama R, Vennemann T, Siebel W, Markl G (2005) The Gronnedal-Ika carbonatite-syenite complex, South Greenland: carbonatite formation by liquid immiscibility. J Petrol 46:191–217

    Article  Google Scholar 

  • Hatch GP (2012) Dynamics in the global market for rare earths. Elements 8:341–346

    Article  Google Scholar 

  • Horgarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 105–148

    Google Scholar 

  • Hornig-Kjarsgaard I (1998) Rare earth elements in sovitic carbonatites and their mineral phases. J Petrol 39:2105–2121

    Article  Google Scholar 

  • Hou Z, Tian S, Xie Y, Yang Z, Yuan Z, Yin S, Li X (2009) The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geol Rev 36:65–89

    Article  Google Scholar 

  • Jago BC, Gittins J (1991) The role of fluorine in carbonatite magma evolution. Nature 349:56–58

    Article  Google Scholar 

  • Jones AP, Wyllie PJ (1983) Low-temperature glass quenched from a synthetic, rare earth carbonatite; implications for the origin of the Mountain Pass Deposit, California. Econ Geol 78:1721–1723

    Article  Google Scholar 

  • Jones AP, Wyllie PJ (1986) Solubility of rare earth elements in carbonatite magmas, indicated by the liquidus surface in CaCO3–Ca(OH)2–La(OH)3 at 1kbar pressure. Appl Geochem 1:95–102

    Article  Google Scholar 

  • Keller J, Zaitsev A (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53

    Article  Google Scholar 

  • Keppler H (2003) Water solubility in carbonatite melts. Am Mineral 88:1822–1824

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1988) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral Mag 52:43–55

    Article  Google Scholar 

  • Klemm LM, Thomas Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineral Depos 43:533–552

    Article  Google Scholar 

  • Korobeinikov AN, Mitrofanov FP, Gehör S, Laajoki K, Pavlov VP, Mamontov VP (1998) Geology and copper sulphide mineralization of the Salmagorskii ring igneous complex, Kola Peninsula, NW Russia. J Petrol 39:2033–2041

    Article  Google Scholar 

  • Koster van Groos AF (1990) High-pressure DTA study of the upper three-phase region in the system Na2CO3–H2O. Am Mineral 75:667–675

    Google Scholar 

  • Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee WJ, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatite. Int Geol Rev 36:797–819

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Ohtani E, Yaxley GM (2013) Solidus of alkaline carbonatite in the deep mantle. Geology 41:79–82

    Article  Google Scholar 

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  Google Scholar 

  • Manning DAC, Henderson P (1984) The behaviour of tungsten in granitic melt-vapour systems. Contrib Mineral Petrol 86:286–293

    Article  Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 149–175

    Google Scholar 

  • Martin LH-J, Schmidt MW, Mattsson HB, Günther D (2013) Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J Petrol 54:2301–2338

    Article  Google Scholar 

  • Matthews W, Linnen RL, Guo Q (2003) A filler-rod technique for controlling redox conditions in cold-seal pressure vessels. Am Mineral 88:701–707

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2002) A spectrophotometric study of neodymium (III) complexation in chloride solutions. Geochim Cosmochim Acta 66:4311–4323

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2008) A spectrophotometric study of Nd(III), Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures. Geochim Cosmochim Acta 72:5291–5303

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Acta 73:7087–7109

    Article  Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  • Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex. Contrib Mineral Petrol 126:331–344

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reef carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283

    Article  Google Scholar 

  • Panina LI, Motorina IV (2008) Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem Int 46:448–464

    Article  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  Google Scholar 

  • Pitzer KS (1983) Dielectric constant of water at very high temperature and pressure. Proc Natl Acad Sci 80:4575–4576

    Article  Google Scholar 

  • Rempel KU, Williams-Jones EE, Migdisov AA (2006) The solubility of molybdenum in water vapour at elevated temperatures and pressures: implications for ore genesis. Geochim Cosmochim Acta 70:687–696

    Article  Google Scholar 

  • Ruberti E, Enrich GER, Gomes CB, Comin-Chiaramonti P (2008) Hydrothermal REE fluorocarbonate mineralization at Barra do Itapirapua, a multiple stockwork carbonatite, Southern Brazil. Can Mineral 46:901–914

    Article  Google Scholar 

  • Seedorff E, Einaudi MT (2004) Henderson porphyry molybdenum system, Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Econ Geol 99:39–72

    Google Scholar 

  • Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160

    Article  Google Scholar 

  • Sokolov SV, Veksler IV, Senin VG (1999) Alkalis in carbonatite magmas: new evidence from melt inclusions. Petrology 7:602–609

    Google Scholar 

  • Song WL, Xu C, Kynicky J, Qi L, Zhou L (2015) Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization. Ore Geol Rev 64:756–765

    Article  Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0 to 5.7 GPa: new experimental data for garnet, clinopyroxene and rutile and implications for mantle metasomatism. Geochim Cosmochim Acta 62:1781–1801

    Article  Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31

    Article  Google Scholar 

  • Tsay A, Zajacz Z, Sanchez-Valle C (2014) Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration. Earth Planet Sci Lett 398:101–112

    Article  Google Scholar 

  • Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992) Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochim Cosmochim Acta 56:2487–2501

    Article  Google Scholar 

  • Veksler IV, Keppler H (2000) Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1–0.2 GPa. Contrib Mineral Petrol 138:27–34

    Article  Google Scholar 

  • Veksler IV, Nielsen TFD, Sokolov SV (1998a) Mineralogy of crystallised melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015–2031

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998b) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2014–2095

    Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Wall F, Zaitsev AN (2004) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, vol 10., Mineralogical society seriesMineralogical Society, London

    Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346

    Article  Google Scholar 

  • Wasserman E, Wood B, Brodhol J (1995) The static dielectric constant of water at pressures up to 20 kbar and temperatures to 1273 K: experiment, simulations, and empirical equations. Geochim Cosmochim Acta 59:1–6

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements: a tale of “ceria” and “yttria”. Elements 8:355–360

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapour pressure. Chem Geol 88:99–125

    Article  Google Scholar 

  • Wood SA (1992) Experimental determination of the solubility of WO3 (s) and the thermodynamic properties of H2WO4 (aq) in the range 300–600 °C at 1 kbar: calculation of scheelite solubility. Geochim Cosmochim Acta 56:1827–1836

    Article  Google Scholar 

  • Woolley AR, Church AA (2005) Extrusive carbonatites: a brief review. Lithos 85:1–14

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical composition. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Wyllie PJ (1989) Origin of carbonatites: evidence from phase equilibrium studies. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 500–545

    Google Scholar 

  • Wyllie PJ, Jones AP, Deng J (1996) Rare earth elements in carbonate-rich melts from mantle to crust. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits, vol 7., Mineralogical society seriesChapman and Hall, London, pp 77–98

    Google Scholar 

  • Xie Y, Hou Z, Yin S, Dominy SC, Xu J, Tian S, Xu W (2009) Continuous carbonatitic melt-fluid evolution for REE mineralization system: evidence from inclusions in the Maoniuping REE deposit in the western Sichuan, China. Ore Geol Rev 36:89–104

    Article  Google Scholar 

  • Xu C, Campbell IH, Kynicky J, Allen CM, Chen Y, Huang Z, Qi L (2008) Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106:12–24

    Article  Google Scholar 

  • Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM (2010a) Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos 118:145–155

    Article  Google Scholar 

  • Xu C, Kynicky J, Chakhmouradian AR, Qi L, Song WL (2010b) A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China. Lithos 118:50–60

    Article  Google Scholar 

  • Xu C, Taylor RN, Li WB, Kynicky J, Chakhmouradian AR, Song WL (2012) Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. J Asian Earth Sci 57:76–89

    Article  Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146:606–619

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LAICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to Drs. Georg Schettler and Tomáš Vaculovič for analysis, Hans-Peter Nabein for assistance with experiments, and Marco Brenna for proofreading the final version. Two anonymous reviewers and Editor Hans Keppler for reviewing and improving the manuscript are thanked. This study was financially supported by Chinese National Science Foundation (Nos. 41173033, 41222022, 41573033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Xu.

Additional information

Communicated by Hans Keppler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Xu, C., Veksler, I.V. et al. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization. Contrib Mineral Petrol 171, 1 (2016). https://doi.org/10.1007/s00410-015-1217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1217-5

Keywords

Navigation