Skip to main content
Log in

Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+  = 1.1 Å to r04+  = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs (\({D}_{Nd}^{Nye}\)= 0.58 vs. \({D}_{Nd}^{Ggy}\) = 0.21; \({D}_{La}^{Nye}\) = 0.27 vs. \({D}_{La}^{Ggy}\) = 0.12), Sr (\({D}_{Sr}^{Nye}\)= 0.92 vs. \({D}_{Sr}^{Ggy}\) = 0.5), Ba (\({D}_{Ba}^{Nye}\)= 0.22 vs. \({D}_{Ba}^{Ggy}\) = 0.1), and Rb (\({D}_{Rb}^{Nye}\)= 0.35 vs. \({D}_{Rb}^{Ggy}\) = 0.26), but lower for HFSEs (e.g., \({D}_{Hf}^{Nye}\) = 0.13 vs. \({D}_{Hf}^{Ggy}\) = 0.28; \({D}_{Nb}^{Nye}\) = 0.02 vs. \({D}_{Nb}^{Ggy}\) = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data from this study is already provided in the supplementary material.

References

  • Baudouin C, France L (2019) Trace element partitioning between wollastonite and alkaline silicate magmas. Chem Geol 523:88–94

    Article  Google Scholar 

  • Baudouin C, France L, Boulanger M, Dalou C, Devidal JL (2020) Trace element partitioning between clinopyroxene and alkaline magmas: parametrization and role of M1 site on HREE enrichment in clinopyroxenes. Contrib Mineral Petrol 175(5):1–15

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372(6505):452–454

    Article  Google Scholar 

  • Bolotina NB, Gavryushkin PN, Korsakov AV, Rashchenko SV, Seryotkin YV, Golovin AV, Litasov KD (2016) Incommensurately modulated twin structure of nyerereite Na1. 64K0. 36Ca (CO3) 2. Acta Crystallographica Sect B: Struct Sci, Crystal Eng Mat 73(2):276–284

    Article  Google Scholar 

  • Bosshard-Stadlin SA, Mattsson HB, Keller J (2014) Magma mixing and forced exsolution of CO2 during the explosive 2007–2008 eruption of Oldoinyo Lengai (Tanzania). J VolcanolGeotherm Res 285:229–246

    Google Scholar 

  • Chebotarev DA, Veksler IV, Wohlgemuth-Ueberwasser C, Doroshkevich AG, Koch-Müller M (2019) Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3+ CaF2+ Na2CO3±Ca3(PO4)2 at 100 MPa. Contrib Mineral Petrol 174:1–13

    Article  Google Scholar 

  • Chebotarev DA, Wohlgemuth-Ueberwasser C, Hou T (2022) Partitioning of REE between calcite and carbonatitic melt containing P S Si at 650–900° C and 100 MPa. Sci Rep 12(1):1–9

    Article  Google Scholar 

  • Chen W, Kamenetsky VS, Simonetti A (2013) Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat Comm 4(1):1–6

    Article  Google Scholar 

  • Cooper AF (1975) The system Na2CO3-K2CO3-CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Am J Sci 275(5):534–560

    Article  Google Scholar 

  • Dalou C, Boulon J, Koga KT, Dalou R, Dennen RL (2018) DOUBLE FIT: optimization procedure applied to lattice strain model. Comput Geosci 117:49–56

    Article  Google Scholar 

  • Dawson S, Smith DE, Ruffman A, Shi S (1996) The diatom biostratigraphy of tsunami sediments: examples from recent and middle Holocene events. Phys Chem Earth 21(1–2):87–92

    Article  Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai. Tanzania J Petrol 36(3):797–826

    Article  Google Scholar 

  • Griffin WL (2008) GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues 308–311

  • Golubkova A, Merlini M, Schmidt MW (2015) Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg (CO3)2–Na2Mg (CO3)2 join. Am Mineral 100(11–12):2458–2467

    Article  Google Scholar 

  • France L, Brouillet F, Lang S (2021) Early carbonatite magmatism at Oldoinyo Lengai volcano (Tanzania): carbonatite–silicate melt immiscibility in Lengai I melt inclusions. Comptes Rendus Géosci 353(S2):1–16

    Google Scholar 

  • Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645

    Article  Google Scholar 

  • Keller J, Spettel B (1995) The trace element composition and petrogenesis of natrocarbonatites. In Carbonatite Volcanism Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53

    Article  Google Scholar 

  • Keller J, Klaudius J, Kervyn M, Ernst GG, Mattsson HB (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai. Tanzania Bull Volcanol 72(8):893–912

    Article  Google Scholar 

  • Kervyn M, Ernst GG, Klaudius J, Keller J, Kervyn F, Mattsson HB, Belton F, Mbede E, Jacobs P (2008) Voluminous lava flows at Oldoinyo Lengai in 2006: chronology of events and insights into the shallow magmatic system. Bull Volcanol 70(9):1069–1086

    Article  Google Scholar 

  • Klaudius J, Keller J (2006) Peralkaline silicate lavas at oldoinyo lengai. Tanzania Lithos 91(1–4):173–190

    Article  Google Scholar 

  • Krafft M, Keller J (1989) Temperature measurements in carbonatite lava lakes and flows from Oldoinyo Lengai. Tanzania Science 245(4914):168–170

    Google Scholar 

  • Laxton K (2020) Collection of lava samples from Ol Doinyo Lengai. Nature Rev Earth Environ 1(9):438–438

    Article  Google Scholar 

  • Laxton K (2022) Natrocarbonatite volcanism at Ol Doinyo Lengai volcano, Tanzania: A multidisciplinary investigation of effusive activity following the 2007–2008 explosive eruption. Thesis publication, University College London

    Google Scholar 

  • Mattsson HB, Caricchi L (2009) Experimental constraints on the crystallization of natrocarbonatitic lava flows. Bull Volcanol 71(10):1179–1193

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) Composition of the Earth. Chemgeol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McKie D, Frankis EJ, (1977) Nyerereite: a new volcanic carbonate mineral from Oldoinyo Lengai Tanzania. Zeitschrift für Kristallographie-Crystalline Materials 145 (1) 73–95

  • Mitchell RH (2006) Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai. Tanzania Mineral Magazine 70(4):437–444

    Article  Google Scholar 

  • Mitchell RH, Kamenetsky VS (2008) Trace element geochemistry of nyerereite and gregoryite phenocrysts from Oldoinyo Lengai natrocarbonatite lava. Geochim Cosmochim Acta Supplement 72(12):A637

    Google Scholar 

  • Mitchell RH, Kamenetsky VS (2012) Trace element geochemistry of nyerereite and gregoryite phenocrysts from natrocarbonatite lava, Oldoinyo Lengai, Tanzania: Implications for magma mixing. Lithos 152:56–65

    Article  Google Scholar 

  • Mitchell RH, Kjarsgaard BA (2011) Experimental Studies of the System Na2CO3–CaCO3–MgF2 at 0.1 GPa: Implications for the Differentiation and Low-temperature Crystallization of Natrocarbonatite. J Petrol 52 (7–8): 1265–1280

  • Mollé V, Gaillard F, Nabyl Z, Tuduri J, Di Carlo I, Erdmann S (2021) Crystallisation sequence of a REE-rich carbonate melt: an experimental approach. Comptes Rendus Géoscience 353(S2):217–231

    Article  Google Scholar 

  • Mollex G, Füri E, Burnard P, Zimmermann L, Chazot G, Kazimoto EO, France L (2018) Tracing helium isotope compositions from mantle source to fumaroles at Oldoinyo Lengai volcano, Tanzania. Chem Geol 480:66–74

    Article  Google Scholar 

  • Perry E, Gysi AP (2020) Hydrothermal calcite-fluid REE partitioning experiments at 200 °C and saturated water vapor pressure. Geochim Cosmochim Acta 286:177–197

    Article  Google Scholar 

  • Peterson TD (1990) Petrology and genesis of natrocarbonatite. Contrib MineralPetrol 105:143–155

    Article  Google Scholar 

  • Petibon CM, Kjarsgaard BA, Jenner A, Jackson SE (1998) Phase relationships of a silicate-bearing natrocarbonatite from Oldoinyo Lengai at 20 and 100 MPa. J Petrol 39:2137–2151

    Article  Google Scholar 

  • Stoppa F, Jones AP, Sharygin VV (2009) Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts Research Article. Central Europ J Geosci 1(2):131–151

    Google Scholar 

  • Voigt M, Mavromatis V, Oelkers EH (2017) The experimental determination of REE partition coefficients in the water-calcite system. Chem Geol 462:30–43

    Article  Google Scholar 

  • Weidendorfer D, Schmidt MW, Mattsson HB (2017) A common origin of carbonatite magmas. Geology 45(6):507–510

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129(2):166–181

    Article  Google Scholar 

  • Yaxley GM, Anenburg M, Tappe S, Decree S, Guzmics T (2022) Carbonatites: classification, sources, evolution, and emplacement. Annu Rev Earth Planet Sci 50:261–293

    Article  Google Scholar 

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites. Tanzania Lithos 91(1–4):191–207

    Article  Google Scholar 

  • Zaitsev AN, Keller J, Spratt J, Jeffries TE, Sharygin VV (2009) Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano. Tanzania Geology Ore Deposits 51(7):608–616

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Anenburg and an anonymous reviewer for their helpful and constructive comments, and also O. Müntener for efficient editorial handling and suggestions. We offer special thanks to Kate Laxton for providing samples and useful discussions. The authors would like to thank O. Rouer for help with microprobe measurements and C. Peiffert for assistance during LA-ICP-MS analyses. This work was supported by the French National Research Agency through the national program “Investissements d’avenir” with the reference ANR-10-LABX-21-01/LABEX RESSOURCES21, and through the project GECO-REE (ANR-16-CE01-0003-01; P.I., Lydéric France). This study was also supported by the Région Lorraine, and PNP and CESSUR programs from INSU-CNRS (grants to Lydéric France). This is CRPG contribution number 2846 and GECO-REE contribution number 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Baudouin.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 362 KB)

Supplementary file2 (PDF 1344 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudouin, C., France, L. Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution. Contrib Mineral Petrol 178, 40 (2023). https://doi.org/10.1007/s00410-023-02021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-02021-z

Keywords

Navigation