Skip to main content

Advertisement

Log in

Diamond formation in the system MgO–SiO2–H2O–C at 7.5 GPa and 1,600°C

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Diamond crystallization has been studied in the SiO2–H2O–С, Mg2SiO4–H2O–С and H2O–С subsystems at 7.5 GPa and 1,600°C. We found that dissolution of initial graphite is followed by spontaneous nucleation of diamond and growth of diamond on seed crystals. In 15-h runs, the degree of graphite to diamond transformation [α = MDm/(MDm + MGr)100, where MDm is mass of obtained diamond and MGr mass of residual graphite] reached 100% in H2O-rich fluids but was only 35–50% in water-saturated silicate melts. In 40-h runs, an abrupt decrease of α has been established at the weight ratio H2O/(H2O + SiO2) ≤ 0.16 or H2O/(H2O + Mg2SiO4) ≤ 0.15. Our results indicate that α is a function of the concentration of water, which controls both the kinetics of diamond nucleation and the intensity of carbon mass transfer in the systems. The most favorable conditions for diamond crystallization in the mantle silicate environment at reliable PT-parameters occur in the fluid phase with low concentration of silicates solute. In H2O-poor silicate melts diamond formation is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaishi M, Kanda H, Yamaoka S (1990) Synthesis of diamond from graphite-carbonate systems under very high temperature and pressure. J Cryst Growth 104:578–581

    Article  Google Scholar 

  • Akaishi M, Kumar MSD, Kanda H, Yamaoka S (2000) Formation process of diamond from supercritical H2O–CO2 fluid under high pressure and high temperature conditions. Diam Relat Mater 9:1945–1950

    Article  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Article  Google Scholar 

  • Boyd SR, Pineau F, Javoy M (1994) Modeling the growth of natural diamonds. Chem Geol 116:29–42

    Article  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF, Carroll MR (1999) Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim Cosmochim Acta 63:3549–3565

    Article  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts Part II: IR characteristics of carbonate groups in silicate glasses. Chem Geol 174:241–254

    Article  Google Scholar 

  • Bundy FP, Bovenkerk HP, Strong HM, Wentorf RH (1961) Diamond-graphite equilibrium line from growth and graphitization of diamond. J Chem Phys 35:383–391

    Article  Google Scholar 

  • De Corte K, Cartigny P, Shatsky VS, Javoy M et al (1998) First evidence of inclusions in metamorphic microdiamonds from the Kokchetav Massif, Northern Kazakhstan. Geochim Cosmochim Acta 62:3763–3765

    Google Scholar 

  • Girnis AV, Bulatov VK, Brey GP (2005) Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study. Petrology 13:1–15

    Google Scholar 

  • Haggerty SE (1986) Diamond genesis in a multiply constrained model. Nature 320:34–38

    Article  Google Scholar 

  • Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Nature 285:851–859

    Google Scholar 

  • Harris JW (1992) Diamond geology. In: Field JE (ed) The properties of natural and synthetic diamond, Academic, London, pp 345–393

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Kawamoto T, Holloway JR (1997) Melting temperature and partial melt chemistry of H2O-Saturated Mantle Peridotite to 11 Gigapascals. Science 276:240–243

    Article  Google Scholar 

  • Kennedy GC, Wasserburg GJ, Heard HC, Newton RC (1962) The upper three-phase region in the system SiO2–H2O. Am J Sci 260:501–521

    Article  Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005) The water-basalt system at 4 to 6 GPa: phase relation and second critical endpoint in a K-free eclogite at 700 to 1,400°C. Earth Planet Sci Lett 237:873–892

    Article  Google Scholar 

  • Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am Mineral 91:353–365

    Article  Google Scholar 

  • Litvin YA, Spivak AV, Matveev YA (2003) Experimental study of diamond formation in the molten carbonate-silicate rocks of the Kokchetav metamorphic complex at 5.5–7.5 GPa. Geochem Int 41:1090–1098

    Google Scholar 

  • Luth RW (1993) Melting in the Mg2SiO4–H2O System at 3 to 12 GPa. Geophys Res Lett 20:233–235

    Google Scholar 

  • Luth RW (2004) Mantle volatiles—distribution and consequences. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier, vol 2, pp 319–361

  • Mibe K, Fujii T, Yasuda A (2002) Composition of aqueous fluid coexisting with minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta 66:2273–2285

    Article  Google Scholar 

  • Navon O (1999) Diamond formation in the Earth’s mantle. In: Gurney JJ, Gurney JL, Pascoe MD, Richadson SH (eds) VII international kimberlite conference, Red roof design, Cape Town, pp 584–604

    Google Scholar 

  • Nowak M, Behrens H (1995) The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy. Geochim Cosmochim Acta 59:3445–3450

    Article  Google Scholar 

  • Pal’yanov YuN, Khokhryakov AF, Borzdov YuM, Sokol AG et al (1997) Growth conditions and real structure of synthetic diamond crystals. Geol Geofiz 38:882–904

    Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418

    Article  Google Scholar 

  • Pal’yanov YuN, Sokol AG, Khokhryakov AF, Pal’yanova GA, Borzdov YuM, Sobolev NV (2000) Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dokl Earth Sci 375A:1395–1399

    Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF (2002a) Alkaline carbonate-fluid melts as the medium for the formation of diamonds in the Earth’s mantle: an experimental study. Lithos 60:145–159

    Article  Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (2002b) Diamond formation through carbonate-silicate interaction. Am Mineral 87:1009–1013

    Google Scholar 

  • Pal’yanov YuN, Kupriyanov IN, Khokhryakov AF, Borzdov YuM, Gusev VA, Van Royen J (2003) Crystal growth and characterization of HPHT diamond from a phosphorus-carbon system. Diam Relat Mater 12:1510–1516

    Article  Google Scholar 

  • Pal’yanov YuN, Sokol AG, Tomilenko AA, Sobolev NV (2005) Conditions of diamond formation through carbonate-silicate interaction. Eur J Mineral 17:207–214

    Article  Google Scholar 

  • Palyanov YN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of deep ultrapotassic fluids in diamond formation. Proc Natl Acad Sci USA 104:9122–9127

    Google Scholar 

  • Persikov ES (1998) Viscosities of model and magmatic melts at the TP-parameters of the Earth’s crust and upper mantle. Geol Geofiz 39:1780–1791

    Google Scholar 

  • Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Bostwana. Geochim Cosmochim Acta 58:761–771

    Article  Google Scholar 

  • Sobolev NV (1977) The deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysics Union, Washington, p 304

    Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks. Nature 343:742–746

    Article  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Article  Google Scholar 

  • Sobolev NV, Kaminsky FV, Griffin WL, Yefimova ES, Win TT, Ryan CG, Botkunov AI (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39:135–157

    Article  Google Scholar 

  • Sokol AG, Borzdov YuM, Pal’yanov YuN, Khokhryakov AF, Sobolev NV (2001a) An experimental demonstration of diamond formation in the dolomite-carbon and dolomite-fluid-carbon systems. Eur J Mineral 13:893–900

    Article  Google Scholar 

  • Sokol AG, Pal’yanov YuN, Pal’yanova GA, Khokhryakov AF, Borzdov YuM (2001b) Diamond and graphite crystallization from C-O-H fluids. Diam Relat Mater 10:2131–2136

    Article  Google Scholar 

  • Sokol AG, Pal’yanov YuN, Pal’yanova GA, Tomilenko AA (2004) Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 1. Fluid Composition. Geochem Int 42:830–839

    Google Scholar 

  • Stalder R, Ulmer P, Thompson AB, Gunther D (2001) High pressure fluid in the system MgO–SiO2–H2O under upper mantle condition. Contrib Mineral Petrol 140:607–618

    Article  Google Scholar 

  • Taylor WR, Green DH (1988) Measurement of reduced peridotite–C–O–H solidus and implications for redox melting of the mantle. Nature 332:349–352

    Article  Google Scholar 

  • Tomlinson E, Jones A, Milledge J (2004) High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue for Cl–bearing carbonate fluid. Lithos 77:287–294

    Article  Google Scholar 

  • Wyllie PJ (1977) Mantle fluid compositions buffered by carbonates in peridodite–CO2–H2O. J Geol 85:187–207

    Article  Google Scholar 

  • Wyllie P, Ryabchikov I (2000) Volatile components, magmas and critical fluids in upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Yamaoka S, Akaishi M, Kanda H, Osawa T (1992) Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. J Cryst Growth 125:375–377

    Article  Google Scholar 

  • Yamaoka S, Kumar MSD, Kanda H, Akaishi M (2002) Thermal decomposition of glucose and diamond formation under diamond-stable high pressure-high temperature conditions. Diam Relat Mater 11:118–124

    Article  Google Scholar 

  • Zotov N, Keppler H (2002) Silica speciation in aqueous fluids at high pressures and high temperatures. Chem Geol 184:71–82

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Yu. Borzdov, A. Khokhryakov and I. Kupriyanov for their assistance throughout the study and M. Schmidt, G. Yaxley, S. Shirey for constructive review and comments which considerably improved the manuscript. This work was supported by the Russian Foundation for Basic Research (No. 04-05-64236) and Russian Science Support Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sokol.

Additional information

Communicated by M. W. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokol, A.G., Pal’yanov, Y.N. Diamond formation in the system MgO–SiO2–H2O–C at 7.5 GPa and 1,600°C. Contrib Mineral Petrol 155, 33–43 (2008). https://doi.org/10.1007/s00410-007-0221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0221-9

Keywords

Navigation