Skip to main content
Log in

Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P–T parameters (4 GPa, 1400°С) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanas’ev, V.P., Efimova, E.S., Zinchuk, N.N., and Koptil’, V.I. Atlas morfologii almazov Rossii (Atlas of Morphology of Russian Diamonds), Novosibirsk: SO RAN, NITs OIGGM, 2000.

    Google Scholar 

  • Arima, M., Experimental study of growth and resorption of diamond in kimberlitic melts at high pressure and temperatures, Proceedings of the, 3rd NIRIM Intern. Symp. on Advanced Materials (ISAM'96), 1996, pp. 223–228.

    Google Scholar 

  • Arima, M. and Kozai, Y., Diamond dissolution rates in kimberlitic melts at 1300–1500°C in the graphite stability field, Eur. J. Mineral., 2008, vol. 20, pp. 357–364.

    Article  Google Scholar 

  • Bagdassarov, N., Solferino, G., Golabek, G., and Schmidt, M., Centrifuge assisted percolation of Fe–S melts in partially molten peridotite: time constraints for planetary core formation, Earth Planet. Sci. Lett., 2009, vol. 288, pp. 84–95.

    Article  Google Scholar 

  • Bartoshinskii, Z.V. and Kvasnitsa, V.N., Kristallomorfologiya almaza iz kimberlitov (Crystalomorphology of Kimberlite Diamond), Kiev: Nauk. Dumka, 1991.

    Google Scholar 

  • Beskrovanov V.V. Ontogeniya almaza (Diamond Ontogeny), Novosibirsk: Nauka, 2000.

    Google Scholar 

  • Bogatyreva, G.P., Kruk, V.B., and Sokhina, L.A., Determination of diamond content in the diamond-bearing materials, Sintet. Almazy, 1974, no. 5, pp. 19–21.

    Google Scholar 

  • Bulanova, G.P., The formation of diamond, J. Geochem. Explor., 1995, no. 53, pp. 1–23.

    Article  Google Scholar 

  • Bulanova, G.P., Spetsius, Z.V., and Leskova, N.V., Sul’fidy v almazakh i ksenolitakh iz kimberlitovykh trubok Yakutii (Sulfides in Diamonds and Xenliths from Yakutian Kimberlite Pipes), Novosibirsk: Nauka. 1990.

    Google Scholar 

  • Bulanova, G.P., Griffin, W.L., Ryan, C.G., et al., Trace elements in sulfide inclusions from Yakutian diamonds, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 111–125.

    Article  Google Scholar 

  • Bulanova, G.P., Griffin, W.L., and Ryan, C.G., Nucleation environment of diamonds from Yakutian kimberlites, Mineral. Mag., 1998, vol. 62, pp. 409–419.

    Article  Google Scholar 

  • Campbell, A.J., Seagle, C.T., Heinz, D.L., et al., Partial melting in the iron-sulfur system at high pressure: a synchrotron X-ray diffraction study, Phys. Earth Planet. Inter., 2007, vol. 162, pp. 119–128.

    Article  Google Scholar 

  • Chabot, N.L., Campbell, A.J., McDonough, W.F., et al., The Fe–C system at 5 GPa and implications for earth’s core, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4146–4158.

    Article  Google Scholar 

  • Chepurov, A.I., Role of sulfide melt in natural diamond formation, Geol. Geofiz., 1988, no. 8, pp. 119–124.

    Google Scholar 

  • Chepurov, A.I., Fedorov, I.I., and Sonin, V.M., Experimental studies of diamond formation at high PT-parameters: supplement to the model for natural diamond formation, Geol. Geofiz., 1998, vol. 39, no. 2, pp. 234–244.

    Google Scholar 

  • Chepurov, A.I., Khokhriakov, A.F., Sonin, V.M., et al., The shape of diamond crystal dissolution in silicate melts under high pressure, Dokl. Akad. Nauk, 1985, vol. 285, no. 1, pp. 212–216.

    Google Scholar 

  • Deines, P. and Harris, J.W., Sulfide inclusions chemistry and carbon isotopes of african diamonds, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3173–3188.

    Article  Google Scholar 

  • Efimova E.S., Sobolev N.V., and Pospelova, L.N., Sulfide inclusions in diamonds and specifics of their paragenesis, Zap. Ross. Mineral. O-va, 1983, vol. 112, no. 3, pp. 300–310.

    Google Scholar 

  • Fedorov, I.I., Chepurov, A.I., Sonin, V.M., and Zhimulev, E.I., Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds, Geochem. Int., 2006, vol. 44, no. 10, pp. 1048–1052.

    Article  Google Scholar 

  • Fedortchouk, Y., Canil, D., and Semenets, E., Mechanism of diamond oxidation and their bearing on the fluid composition in kimberlitic magmas, Am. Mineral., 2007, vol. 92, pp. 1200–1212.

    Article  Google Scholar 

  • Frost, D.J. and McCammon, C.A., The redox state of the earth’s mantle, Annu. Rev. Earth Planet. Sci., 2008, vol. 36, pp. 389–420.

    Article  Google Scholar 

  • Garanin, V.K. and Kudryavtseva, G.P., Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites, Lithos, 1990, vol. 25, pp. 211–217.

    Article  Google Scholar 

  • Gorshkov, A.I., Yan Nan Bao, Bershov, L.V., et al., Inclusions of native metals and other minerals in diamond from Kimberlite Pipe 50, Liaoning, China, Geochem. Int.z, 1997, vol. 35, no. 8, 695–703.

    Google Scholar 

  • Haggerty, S.E., Diamond genesis in a multiply constrained model, Nature, 1986, vol. 320, pp. 34–38.

    Article  Google Scholar 

  • Harris, J.W. and Gurney, J.J., Inclusions in diamond, The Properties of Diamond, Field J.E., Eds., Academ. Press, 1979, pp. 554–591.

  • Huang, H., Fei, Y., Cai, L., et al., Evidence for an oxygendepleted liquid outer core of the Earth, Nature, 2011, vol. 479, pp. 513–516.

    Article  Google Scholar 

  • Kadik, A.A., Solubility of hydrogen and carbon in reduced magmas of the early Earth’s mantle, Geochem. Int., 2006, vol. 44, no. 1, pp. 33–47.

    Article  Google Scholar 

  • Kaminsky, F.V. and Wirth, R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil, Can. Mineral., 2011, vol. 49, pp. 555–572.

    Article  Google Scholar 

  • Kennedy, C.S. and Kennedy, G.C., The equilibrium boundary between graphite and diamond, J. Geophys. Res., 1976, vol. 81, pp. 2467–2470.

    Article  Google Scholar 

  • Khokhryakov, A.F. and Pal’yanov, Yu.N., Morphology of diamond crystals dissolved in water-bearing silicate melts, Mineral. Zh., 1990, no. 1, pp. 14–23.

    Google Scholar 

  • Khokhryakov, A.F. and Pal’yanov, Yu.N., The evolution of diamond morphology in the process of dissolution: experimental data, Am. Mineral., 2007, vol. 92, pp. 909–917.

    Article  Google Scholar 

  • Khokhryakov, A.F. and Pal’yanov, Yu.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts, Am. Mineral., 2010, vol. 95, pp. 1508–1514.

    Article  Google Scholar 

  • Kozai, Y. and Arima, M., Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420oC and 1 GPa with controlled oxygen partial pressure, Am. Mineral., 2005, vol. 90, pp. 1759–1766.

    Article  Google Scholar 

  • Kukharenko, A.A., Almazy Urala (Diamonds of the Urals), Moscow: Gosgeoltekhizdat, 1955.

    Google Scholar 

  • Marx, P.C., Pyrrotine and the origin of terrestrial diamonds, Mineral. Mag., 1972, vol. 38, pp. 636–638.

    Article  Google Scholar 

  • Meyer, H.O.A., in Inclusions in diamond, Mantle Xenoliths, Nixon, P.H., Ed., Chichester: John Willy and Sons Ltd, 1987, pp. 501–533.

  • Mokievskii, V.A., Morfologiya kristallov: Metodicheskoe rukovodstvo (Morphology of Crystals: Methodical Reference Book), Leningrad: Nedra, 1983.

    Google Scholar 

  • Orlov, Yu.L., Mineralogiya almaza (Diamond Mineralogy), Moscow: Nauka, 1984.

    Google Scholar 

  • Poirier, J.P., Light elements in the earth’s outer core: a critical review, Phys. Earth Planet. Inter., 1994, vol. 85, pp. 319–337.

    Article  Google Scholar 

  • Pshenichnov, Yu.P., Vyyavlenie tonkoi struktury kristallov. Spravochnik (Detection of Fine Crystal Structure. Reference Book), Moscow: Metallurgiya, 1974.

    Google Scholar 

  • Rohrbach, A., Ballhaus, C., Gola-Schindler, U., et al., Metal saturation in the upper mantle, Nature, 2007, vol. 449, pp. 456–458.

    Article  Google Scholar 

  • Sharp, W.E., Pyrrhotite: a common inclusion in the South African diamonds, Nature, 1966, vol. 211, no. (5047), pp. 402–403.

    Google Scholar 

  • Sobolev, N.V., Glubinnye vklyucheniya v kimberlitakh i problema sostava verkhnei mantii (Deep-Seated Inclusions in Kimberlites and Problem of Upper Mantle Composition), Novosibirsk: Nauka, 1974.

    Google Scholar 

  • Sobolev, N.V., Efimova, E.S., and Pospelova, L.N., Native iron in diamonds of Yakutia and its paragenesis, Geol. Geofiz., 1981, vol. 22, no. 12, pp. 25–29.

    Google Scholar 

  • Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., et al., Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P-T parameters, Geokhimiya, 1997, vol. 35, no. 4, pp. 451–455.

    Google Scholar 

  • Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., et al., Etching of diamond crystals in a dry silicate melt at high P-T parameters, Geochemi. Int., 2001, vol. 39, no. 3, pp. 268–274.

    Google Scholar 

  • Sonin, V.M., Zhimulev, E.I., Chepurov, A.I., et al., Morphology of diamond crystals etched in a kimberlite melt at high PT parameters, Izv. Vyssh. Ucheb. Zaved., Geol. Razvedka, 2002a, no. 1, pp. 60–69.

    Google Scholar 

  • Sonin, V.M., Zhimulev E.I., Afanas’ev, V.P., and Chepurov, A.I., Genetic aspects of diamond morphology, Geol. Ore Deposits, 2002b, vol. 44, no. 4, pp. 291–299.

    Google Scholar 

  • Sonin, V.M., Zhimulev, E.I., Tomilenko, A.A., et al., Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability, Geol. Ore Deposits, 2004, vol. 46, no. 3, pp. 182–190.

    Google Scholar 

  • Spetsius, Z.V. and Serenko, V.P., Sostav kontinental’noi verkhnei mantii i nizov kory pod sibirskoi platformoi (Composition of Continental Upper Mantle beneath Siberian Platform), Moscow: Nauka, 1990.

    Google Scholar 

  • Stachel, T., Harris, J.W., and Brey, G.P., Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 34–47.

    Article  Google Scholar 

  • Stagno, V. and Frost, D.J., Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages, Earth Planet. Sci. Lett., 2010, vol. 300, pp. 72–84.

    Article  Google Scholar 

  • Steward, A.J., Schmidt, M.W., Van Westrenen, W., and Liebske, C., Mars: a new core-crystallization regime, Science, 2008, vol. 316, pp. 1323–1325.

    Article  Google Scholar 

  • Terasaki, H., Frost, D.J., Rubie, D.C., and Langenhorst, F., Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions, Phys. Earth Planet. Inter., 2007, vol. 161, pp. 170–176.

    Article  Google Scholar 

  • Terasaki, H., Frost, D.J., Rubie, D.C., and Langenhorst, F., Percolative core formation in planetesimals, Earth Planet. Sci. Lett., 2008, vol. 273, pp. 132–37.

    Article  Google Scholar 

  • Titkov, S.V., Gorshkov, A.I., Solodova, Yu.P., et al., Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data, Dokl. Earth Sci., 2006, vol. 410, pp. 1106–1108.

    Article  Google Scholar 

  • Tsuno, K. and Dasgupta, R., Fe–Ni–Cu–C–S phase relations at high pressures and temperatures—the role of sulfur in carbon storage and diamond stability at mid to deepupper mantle, Earth Planet. Sci. Lett., 2015, vol. 412, pp. 132–142.

    Article  Google Scholar 

  • Tsymbulov, L.B. and Tsemekhman, L.Sh., Solubility of carbon in sulfide melts of the system Fe–Ni–S, Russ. J. Appl. Chem., 2001, vol. 74, pp. 925–929.

    Article  Google Scholar 

  • Voitsekhovskii, V.N. and Mokievskii, V.A., Some problems of interaction of growth and dissolution of crystals, Zap. Ross. Mineral. O-va, 1965, vol. 94, no. 1, pp. 71–89.

    Google Scholar 

  • Wade, J. and Wood, B.J., Core formation and oxidation state of the earth, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 78–95.

    Article  Google Scholar 

  • Walte, N., Becker, J., Bons, P., et al., Liquid-distribution and attainment of textural equilibrium in a partially-molten crystalline system with a high-dihedral-angle liquid phase, Earth Planet. Sci. Lett., 2007, vol. 261, pp. 517–532.

    Article  Google Scholar 

  • Walter, M.J., Kohn, S.C., Araujo, D., et al., Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions, Science, 2011, vol. 334, pp. 54–57.

    Article  Google Scholar 

  • Wood, B.J., Carbon in the core, Earth Planet. Sci. Lett., 1993, vol. 117, pp. 593–607.

    Article  Google Scholar 

  • Yoshino, T., Walter, M.J., and Katsura, T., Connectivity of molten fe alloy in peridotite based on in situ electrical conductivity measurements: implication for core formation in terrestrial planet, Earth Planet. Sci. Lett., 2004, vol. 222, pp. 625–643.

    Article  Google Scholar 

  • Zhimulev, E.I., Sonin, V.M., Fedorov, I.I., et al., Diamond stability with respect to oxidation in experiments with minerals from mantle xenoliths at high P-T parameters, Geochem. Int., 2004, vol. 42, no. 6, pp. 520–525.

    Google Scholar 

  • Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F., et al., Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of diamond, Geochem. Int., 2012, vol. 50, no. 3, pp. 205–216.

    Article  Google Scholar 

  • Zhimulev, E.I., Chepurov, A.I., Sonin, V.M., and Pokhilenko, N.H., Migration of molten iron through an olivine matrix in the presence of carbon at high P–T parameters (experimental data), Dokl. Earth Sci., 2015, vol. 463, pp. 677–679.

    Article  Google Scholar 

  • Zhimulev, E.I., Sonin, V.M., Mironov, A.M., and Chepurov, A.I., Effect of sulfur concentration on diamond crystallization in the Fe–C–S system at 5.3–5.5 GPa and 1300–1370 degrees C, Geochem. Int., 2016, vol. 54, no. 5, pp. 415–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sonin.

Additional information

Original Russian Text © V.M. Sonin, E.I. Zhimulev, B.S. Pomazanskiy, A.L. Zemnuhov, A.A. Chepurov, V.P. Afanasiev, A.I. Chepurov, 2018, published in Geologiya Rudnykh Mestorozhdenii, 2018, Vol. 60, No. 1, pp. 91–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonin, V.M., Zhimulev, E.I., Pomazanskiy, B.S. et al. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C. Geol. Ore Deposits 60, 82–92 (2018). https://doi.org/10.1134/S1075701518010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701518010051

Keywords

Navigation