Skip to main content
Log in

Effect of sulfur concentration on diamond crystallization in the Fe–C–S system at 5.3–5.5 GPa and 1300–1370°C

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents results of experiments aimed at diamond synthesis in the Fe–C–S system at 5.3–5.5 GPa and temperatures of 1300–1370°C and detailed data on the microtextures of the experimental samples and the composition of the accompanying phases (Fe3C and Fe7C3 carbides, graphite, and FeS). It is demonstrated that diamond can be synthesized after temperatures at which carbides are formed are overcome and can crystallize within the temperature range of 1300°C (temperature of the peritectic reaction melt + diamond = Fe7C3) to 1370°C (of thermodynamically stable graphite) under the appearance experimental pressure. The possible involvement of natural metal- and sulfur-bearing compounds in the origin of natural diamond is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Ballhaus, “Is the upper mantle metal-saturated?” Earth Planet. Sci. Lett. 132, 75–86 (1995).

    Article  Google Scholar 

  • G. P. Bulanova, “The formation of diamond,” J. Geochem. Explor. 53, 1–23 (1995).

    Article  Google Scholar 

  • G. P. Bulanova, W. L. Griffin, and C. G. Ryan, “Nucleation environment of diamonds from Yakutian kimberlites,” Mineral. Mag. 62, 409–419 (1998).

    Article  Google Scholar 

  • G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in Diamonds and Xenolitjs from the Yakutian Kimberlite Pipes (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  • A. A. Chepurov, J. M. Dereppe, I. I. Fedorov, and A. I. Chepurov, “The change of Fe–Ni alloy inclusions in synthetic diamond crystals due to annealing,” Diamond Relat. Mater. 9, 1374–1379 (2000).

    Article  Google Scholar 

  • A. I. Chepurov, “Role of sulfide melt in natural diamond formation,” Geol. Geofiz. 29 (8), 119–124 (1988).

    Google Scholar 

  • A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN, NITs OIGGM, Novisibirsk, 1997) [in Russian].

    Google Scholar 

  • A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, “Experimental studies of the diamond formation at high P,T-parameters (supplement to the model for natural diamond formation),” Geol. Geofiz. 39 (2), 234–244 (1998).

    Google Scholar 

  • A. I. Chepurov, I. I. Fedorov, V. M. Sonin, A. M. Logvinova, and A. A. Chepurov, “Thermal effect on sulfide inclusions in diamonds (from experimental data),” Russ. Geol. Geophys. 49 (10), 738–742 (2008).

    Article  Google Scholar 

  • A. I. Chepurov, I. I. Fedorov, V. M. Sonin, and N. V. Sobolev, “Formation of diamond in the (Fe, Ni)–S–C–H system at high P-T conditions,” Dokl. Akad. Nauk 336 (2), 238–240 (1994).

    Google Scholar 

  • A. I. Chepurov, E. I. Zhimulev, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, “Crystallization of diamond in metal–sulfide melts,” Dokl. Earth Sci. 428 (7), 1139–1141 (2009).

    Article  Google Scholar 

  • R. Dasgupta, A. Buono, G. Whelan, and D. Walker, “Highpressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies,” Geochim. Cosmochim. Acta 73, 6678–6691 (2009).

    Article  Google Scholar 

  • P. Deines and J. W. Harris, “Sulfide inclusions chemistry and carbon isotopes of African diamonds,” Geochim. Cosmochim. Acta 59, 3173–3188 (1995).

    Article  Google Scholar 

  • E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide inclusions in diamonds and features of their paragenesis,” Zap. Vsesoyuz. Mineral. O-va 112 (3), 300–310 (1983).

    Google Scholar 

  • I. I. Fedorov, A. I. Chepurov, A. A. Chepurov, and A. V. Kuroedov, “Estimation of the rate of postcrystallization self-purification of diamond from metal inclusions in the Earth’s mantle,” Geochem. Int. 43 (12), 1235–1239 (2005).

    Google Scholar 

  • I. I. Fedorov, A. I. Chepurov, V. M. Sonin, A. A. Chepurov, and A. M. Logvinova, “Experimental and thermodynamic study of the crystallization of diamond and silicates in a metal–silicate–carbon system,” Geochem. Int. 46 (4), 340–350 (2008).

    Article  Google Scholar 

  • I. I. Fedorov, A. I. Chepurov, V. M. Sonin, and E. I. Zhimulev, “Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds,” Geochem. Int. 43 (10), 1048–1052 (2006).

    Article  Google Scholar 

  • D. J. Frost and C. A. McCammon, “The redox state of the Earth’s mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  • V. K. Garanin and G. P. Kudryavtseva, “Morphology, physical properties and paragenesis of inclusion-bearing diamonds from Yakutian kimberlites,” Lithos 25, 211–217 (1990).

    Article  Google Scholar 

  • A. I. Gorshkov, Yan Nan Bao, L. V. Bershov, I. D. Ryabchikov, A. V. Sivtsov, and M. I. Lapina, “Inclusions of native metals and other minerals in diamond from Kimberlite Pipe 50, Liaoning, China,” Geochem. Int. 35 (8), 695–703 (1997).

    Google Scholar 

  • S. E. Haggerty, “Diamond genesis in a multiply constrained model,” Nature 320, 34–38 (1986).

    Article  Google Scholar 

  • M. Hansen and K. Anderko, Constitution of the Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).

    Google Scholar 

  • J. W. Harris and J. J. Gurney, “Inclusions in diamond,” in The properties of Diamond, Ed. by J. E. Field, (Academ. Press, London, 1979), pp. 554–591.

    Google Scholar 

  • A. A. Kadik, “Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials,” Geochem. Int. 1, 56–71 (2006).

    Article  Google Scholar 

  • C. S. Kennedy and G. C. Kennedy, “The equilibrium boundary between graphite and diamond,” J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  • G. C. Kennedy, and B. N. Ryzhenko, “Effect of pressure on eutectics in the Fe–FeS system,” Geokhimiya 6, 796–801 (1985).

    Google Scholar 

  • Yu. A. Kocherzhinskii, O. G. Kulik, V. Z. Turkevich, S. A. Ivakhnenko, G. V. Chipenko, E. S. Cherepnina, and A. S. Kryuchkova “Phase equilibria in the iron–carbon system at high pressures,” Sverkhtverd. Mater., No. 6, 3–9 (1992).

    Google Scholar 

  • Yu. A. Kocherzhinskii, O. G. Kulik, and V. Z. Turkevich, “Phase equilibria in the Fe–Ni–C and Fe–Co–C systems under high temperatures and high pressures,” High Temp.-High Press. 25, 113–116 (1993).

    Google Scholar 

  • Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The first synthesis of diamond in sulfide–carbon systems: the role of sulfides in diamond genesis,” Dokl. Earth Sci. 382 (1), 40–43 (2002).

    Google Scholar 

  • Yu. A. Litvin and V. G. Butvina “Diamond-forming media in the system eclogite–carbonatite–sulfide–carbon: experiments at 6.0–8.5 GPa,” Petrology 12 (4), 377–387 (2004).

    Google Scholar 

  • O. T. Lord, M. J. Walter, R. Dasgupta, D. Walker, and S. M. Clark, “Melting in the Fe–C system to 70 GPa,” Earth Planet. Sci. Lett. 284, 157–167 (2009).

    Article  Google Scholar 

  • P. C. Marx, “Pyrrotine and the origin of terrestrial diamonds,” Mineral. Mag. 38, 636–638 (1972).

    Article  Google Scholar 

  • H. O. A. Meyer, “Inclusions in diamond,” Mantle xenoliths, Ed. by P. H. Nixon (John Wiley and Sons Ltd., Chichester, 1987), pp. 501–533.

    Google Scholar 

  • S. I. Mityukhin and Z. V. Spetsius, “Paragenesis of inclusions in diamonds from the Botuobinskya pipe, Nakyn Field, Yakutia,” Russ. Geol. Geophys. 46, 1225–1236 (2005).

    Google Scholar 

  • Y. Nakajima, E. Takahashi, T. Suzuki, and K. Funakoshi, “Carbon in the core revisited,” Phys. Earth Planet. Inter. 174, 202–211 (2009).

    Article  Google Scholar 

  • Yu. N. Pal’yanov, Yu. M. Borzdov, Yu. V. Bataleva, A. G. Sokol, A. G. Pal’yanova, and I. N. Kupriyanov, “Reducing role of sulfides and diamond formation in the Earth’s mantle,” Earth Planet. Sci. Lett. 260, 242–256 (2007).

    Article  Google Scholar 

  • Yu. N. Pal’yanov, Yu. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, and N. V. Sobolev, “Sulfide melts–graphite interaction at HPHT conditions: implications for diamond genesis,” Earth Planet. Sci. Lett. 250, 269–280 (2006).

    Article  Google Scholar 

  • Yu. N. Pal’yanov, Yu. M. Borzdov, I. Yu. Ovchinnikov, and N. V. Sobolev, “Experimental study of the interaction between pentlandite melt and carbon at mantle PT parameters: condition of diamond and graphite crystallization,” Dokl. Earth Sci. 392 (7), 1026–1029 (2003).

    Google Scholar 

  • A. Rohrbach, C. Ballhaus, U. Gola-Schindler, P. Ulmer, V. S. Kamenetsky, and D. V. Kuzmin, “Metal saturation in the upper mantle,” Nature 449, 456–458 (2007).

    Article  Google Scholar 

  • W. E. Sharp, “Pyrrhotite: a common inclusion in the South African diamonds,” Nature 211, 402–403 (1966).

    Article  Google Scholar 

  • L. E. Shterenberg, V. N. Slesarev, I. A. Korsunskaya, and D. S. Kamenetskaya, “The experimental study of the interaction between the melt, carbides and diamond in the iron-carbon system at high pressures,” High Temp. High Press. 7, 517–522 (1975).

    Google Scholar 

  • A. V. Shushkanova and Yu. A. Litvin, “Diamond nucleation and growth in sulfide–carbon melts: an experimental study at 6.0–7.1 GPa,” Eur. J. Mineral. 20, 349–355 (2008).

    Article  Google Scholar 

  • A. V. Shushkanova and Yu. A. Litvin “Formation of diamond polycrystals in pyrrhotite–carbonic melt: experiments at 6.7 GPa,” Dokl. Earth Sci. 409A (6), 916–920 (2006).

    Article  Google Scholar 

  • N. V Sobolev, E. S. Efimova, and L. N. Pospelova, Native iron in Yakutian diamonds and its paragenesis, Geol. Geofiz. 22 (12), 25–29 (1981).

    Google Scholar 

  • V. M. Sonin, A. I. Chepurov, I. I. Fedorov, and I. Yu. Malinovsky, “Minimum temperature of diamond synthesis in the metal–carbon systems,” Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 24 (5), 743–746 (1988).

    Google Scholar 

  • T. Stachel, J. W. Harris, and G. P. Brey, “Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania,” Contrib. Mineral. Petrol. 132, 34–47 (1998).

    Article  Google Scholar 

  • V. Stagno and D. J. Frost, “Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages,” Earth Planet. Sci. Lett. 300, 72–84 (2010).

    Article  Google Scholar 

  • H. M. Strong and R. M. Chrenko, “Further studies on diamond growth rates and physical properties of laboratory–made diamond,” J. Phys. Chem. 75, 1838–1843 (1971).

    Article  Google Scholar 

  • T. Sugano, N. Ohashi, T. Tsurumi, and O. Fukunaga, “Pressure and temperature region of diamond formation in systems graphite and Fe containing alloy,” Diamond Relat. Mater. 5, 29–33 (1996).

    Article  Google Scholar 

  • L. A. Taylor and Y. Liu, “Sulfide inclusions in diamonds: not monosulfide solid solution,” Russ. Geol. Geophys. 50 (12), 1201–1211 (2009).

    Article  Google Scholar 

  • A. Tsuzuki, S. Sago, S-I. Hirano, and S. Naka, “High temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C,” J. Mater. Sci. 19, 2513–2518 (1984).

    Article  Google Scholar 

  • L. B. Tsymbulov and L. Sh. Tsemekhman, “Solubility of carbon in sulfide melts of the system Fe–Ni–S,” Russ. J. Appl. Chem. 74, 925–929 (2001).

    Article  Google Scholar 

  • R. H. Wentorf, “Diamond formation at high pressure,” Adv. High Pressure Res. 4, 249–281 (1974).

    Google Scholar 

  • E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, “Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of siamond,” Geochem. Int. 50 (3), 205–216 (2012).

    Article  Google Scholar 

  • E. I. Zhimulev, M. A. Shein, and N. P. Pokhilenko, “Diamond crystallization in the Fe–S–C system,” Dokl. Earth Sci. 451 (1), 729–731 (2013).

    Article  Google Scholar 

  • A. A. Zhukov, L. E. Shterenberg, and V. A. Shalashow, “The iron-carbon system. New developments. I. The pseudohexagonal iron carbide Fe7C3 and the Fe3C–Fe7C3 eutectic,” Acta Metallur. 21, 195–199 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sonin.

Additional information

Original Russian Text © E.I. Zhimulev, V.M. Sonin, A.M. Mironov, A.I. Chepurov, 2016, published in Geokhimiya, 2016, No. 5, pp. 439–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhimulev, E.I., Sonin, V.M., Mironov, A.M. et al. Effect of sulfur concentration on diamond crystallization in the Fe–C–S system at 5.3–5.5 GPa and 1300–1370°C. Geochem. Int. 54, 415–422 (2016). https://doi.org/10.1134/S0016702916050116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916050116

Keywords

Navigation