Skip to main content

Advertisement

Log in

Weakening AMOC connects Equatorial Atlantic and Pacific interannual variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observations indicate that since the 1970s Equatorial Atlantic sea surface temperature (SST) variations in boreal summer tend to modulate El Niño in the following seasons, indicating that the Atlantic Ocean can have importance for predicting the El Niño–Southern Oscillation (ENSO). The cause of the change in the recent decades remains unknown. Here we show that in the Bergen Climate Model (BCM), a freshwater forced weakening of the Atlantic meridional overturning circulation (AMOC) results in a strengthening of the relation between the Atlantic and the Pacific similar to that observed since the 1970s. During the weakening AMOC phase, SST and precipitation increase in the central Equatorial Atlantic, while the mean state of the Pacific does not change significantly. In the Equatorial Atlantic the SST variability has also increased, with a peak in variability in boreal summer. In addition, the characteristic timescales of ENSO variability is shifted towards higher frequencies. The BCM version used here is flux-adjusted, and hence Atlantic variability is realistic in contrast to in many other models. These results indicate that in the BCM a weakening AMOC can change the mean background state of the Tropical Atlantic surface conditions, enhancing Equatorial Atlantic variability, and resulting in a stronger relationship between the Tropical Atlantic and Pacific Oceans. This in turn alters the variability in the Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bjerknes J (1969) Atmospheric teleconnections from equatorial Pacific. Mon Weather Rev 97(3):163–172

    Article  Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith L (1992) Salinity-driven thermocline transients in a 14wind-forced and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22(12):1486–1505

    Article  Google Scholar 

  • Breiteig T (2009) The influence of the ocean and the stratosphere on climate persistence in the North Atlantic region. University of Bergen, Dissertation

    Google Scholar 

  • Broecker W, Peteet D, Rind D (1985) Does the ocean-atmosphere have more than one stable mode of operation. Nature 315:21–25

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Nino Southern Oscillation on European climate. Rev Geophys 45(2):RG3003. doi:10.1029/2006RG000199

    Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Nino and the Atlantic Nino. Nature 443(7109):324–328

    Article  Google Scholar 

  • Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P (2002) Stoic: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420

    Article  Google Scholar 

  • Deque M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model—a contribution to the French community climate modeling. Clim Dyn 10(4–5):249–266

    Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2010) Equatorial Atlantic interannual variability: the role of heat content. J Geophys Res 115:C09020. doi:10.1029/2010JC006304

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38:1965–1972

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33(11):L11,701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Dong B, Sutton RT (2002) Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys Res Lett 29(15):1728. doi:10.1029/2002GL015229

    Article  Google Scholar 

  • Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20(19):4920–4939

    Article  Google Scholar 

  • Enfield D, Mayer D (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J Geophys Res 102(C1):929–945. doi:10.1029/96JC03296

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39(2):L02,706. doi:10.1029/2011GL050520

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21(1):27–51

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate mode. Nature 409:153–158

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Park J-Y, Jin F-F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci. doi:10.1038/ngeo1686

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere-ocean interactions in a conceptual framework. J Clim 22(3):550–567

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632

    Article  Google Scholar 

  • Keenlyside N, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20(1):131–142

    Article  Google Scholar 

  • Keenlyside N, Ding H, Latif M (2013) Potential of Equatorial Atlantic Variability to Enhance El Niño Prediction. Geophys Res Lett 40:2278–2283

    Article  Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(1):RG2001. doi:10.1029/2004RG000166

    Google Scholar 

  • Latif M, Grötzner A (2000) The equatorial Atlantic oscillation and its response to ENSO. Clim Dyn 16(2–3):213–218

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci USA 106(49):20578–20583

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, Dewitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) ENSIP:the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean- atmosphere model to an increase of atmospheric carbon dioxcide. J Clim 7:5–23

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12:321–336

    Article  Google Scholar 

  • Otterå OH, Drange H, Bentsen M, Kvamstø NG, Jiang D (2003) The sensitivity of the present-day Atlantic meridional overturning circulation to freshwater forcing. Geophys Res Lett 30(17):1898. doi:10.1029/2003GL017578

    Article  Google Scholar 

  • Otterå OH, Drange H, Bentsen M, Kvamstø NG, Jiang D (2004) Transient response of the Atlantic meridional overturning circulation to enhanced freshwater input to the Nordic Seas-Arctic Ocean in the Bergen climate model. Tellus A 56(4):342–361. doi:10.1111/j.1600-0870.2004.00063.x

    Article  Google Scholar 

  • Philander S (1990) El Niño, La Niña, and the southern Oscillation. Academic Press, San Diego

    Google Scholar 

  • Räisänen J (2001) CO2-induced climate change in CMIP2 experiments. SWECLIM Newsl 11:23–28

    Google Scholar 

  • Rayner NA, DE Parker, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598

    Article  Google Scholar 

  • Rind D, deMenocal P, Russell G, Sheth S, Collins D, Schmidt G, Teller J (2001) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I. North Atlantic Deep Water response. J Geophys Res 16:27335–27354

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20,705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13(5):325–347

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23):L23,710. doi:10.1029/2005GL024368

    Article  Google Scholar 

  • Simonsen K (1996) Heat budgets and freshwater forcing of the Nordic Seas and the Arctic Ocean. Dissertation, Nansen Environmental and Remote Sensing Center, Bergen

  • Stouffer R, Yin J, Gregory J, Dixon K, Spelman M, Hurlin W, Weaver A, Eby M, Flato G, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W, Robitaille D, Sokolov A, Vettoretti G, Weber S (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907

    Article  Google Scholar 

  • Terray L, Thual O, Belamari S, Déque M, Dandin P, Delecluse P, Levy C (1995) Climatology and interannual variability simulated by the ARPEGE-OPA coupled model. Clim Dyn 11:487–505

    Article  Google Scholar 

  • Terray L, Valke S, Piacentini A (1998) OASIS 2.2 user’s guide and reference manual. Technical report, CERFACS, Toulouse, France

  • Timmermann A, An S, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18(16):3122–3139

    Article  Google Scholar 

  • Tokinaga H, Xie S-P (2011) Weakening of the equatorial Atlantic cold tongue over the past six decades. Nat Geosci 4(4):222–226

    Article  Google Scholar 

  • Venzke S, Latif M, Villwock A (2000) The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J Clim 13:1371–1383

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1980) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific-Atlantic variability. Geophys Res Lett 33(12):L12,702. doi:10.1029/2006GL026324

    Article  Google Scholar 

  • Wen C, Ping C, Saravanan R (2010) Effect of Atlantic meridional overturning circulation changes on tropical Atlantic sea surface temperature variability: a 2½-layer reduced-gravity ocean model study. J Clim 23:312–332

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36(12):L12,702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–514

    Article  Google Scholar 

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6(8):1567–1568

    Article  Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tarjei Breiteig, Helge Drange, Stefan Sobolowski, Tore Furevik and Jin-Yi Yu for valuable discussions and input, and Ingo Bethke for providing support with BCM data. We also thank two anonymous reviewers for constructive suggestions and comments. This study has been supported by the Research Council of Norway through the IndiaClim project, as well as by the EU FP7 SUMO (No. 266722) and STEPS (PCIG10-GA-2011-304243) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Svendsen.

Additional information

This paper is a contribution to the special collection on tropical Atlantic variability and coupled model climate biases that have been the focus of the recently completed Tropical Atlantic Climate Experiment (TACE), an international CLIVAR program (http://www.clivar.org/organization/atlantic/tace). This special collection is coordinated by William Johns, Peter Brandt, and Ping Chang, representatives of the TACE Observations and TACE Modeling and Synthesis working groups.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svendsen, L., Kvamstø, N.G. & Keenlyside, N. Weakening AMOC connects Equatorial Atlantic and Pacific interannual variability. Clim Dyn 43, 2931–2941 (2014). https://doi.org/10.1007/s00382-013-1904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1904-8

Keywords

Navigation