Skip to main content
Log in

Can adaptive observations improve tropical cyclone intensity forecasts?

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts, observing system simulation experiments (OSSEs) were conducted for 20 TC cases originating in the western North Pacific during the 2010 season according to the conditional nonlinear optimal perturbation (CNOP) sensitivity, using the fifth version of the PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilation system. A new intensity index was defined as the sum of the number of grid points within an allocated square centered at the corresponding forecast TC central position, that satisfy constraints associated with the Sea Level Pressure (SLP), near-surface horizontal wind speed, and accumulated convective precipitation. The higher the index value is, the more intense the TC is.

The impacts of the CNOP sensitivity on the intensity forecast were then estimated. The OSSE results showed that for 15 of the 20 cases there were improvements, with reductions of forecast errors in the range of 0.12%–8.59%, which were much less than in track forecasts. The indication, therefore, is that the CNOP sensitivity has a generally positive effect on TC intensity forecasts, but only to a certain degree. We conclude that factors such as the use of a coupled model, or better initialization of the TC vortex, are more important for an accurate TC intensity forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberson, S. D., 2002: Two years of operational hurricane synoptic surveillance. Wea. Forecasting, 17, 1101–1110.

    Article  Google Scholar 

  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613–1628.

    Article  Google Scholar 

  • Chen, B. Y., and M. Mu, 2012: The roles of spatial locations and patterns of initial errors in the uncertainties of tropical cyclone forecasts. Adv. Atmos. Sci., 29(1), 63–78, doi: 10.1007/s00376-011-0201-x.

    Article  Google Scholar 

  • Chen, B. Y., M. Mu, and X. H. Qin, 2013: The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts. Mon. Wea. Rev., 141, 2669–2682.

    Article  Google Scholar 

  • Chou, K. H., C. C. Wu, P. H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728–1743.

    Article  Google Scholar 

  • Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Nino-Southern oscillation events. J. Geophys. Res., 109, D23105, doi: 10.1029/2004JD004756.

    Article  Google Scholar 

  • Duan, W. S., F. Xue, and M. Mu, 2009: Investigating a nonlinear characteristic of El Niño events by conditional nonlinear optimal perturbation. Atmos. Res., 94, 10–18.

    Article  Google Scholar 

  • Duan, W. S., and H. Y. Luo, 2010: A new strategy for solving a class of constrained nonlinear optimization problems related to weather and climate predictability. Adv. Atmos. Sci., 27, 741–749, doi: 10.1007/s00376-009-9141-0.

    Article  Google Scholar 

  • Elsberry, R. L., and P. A., Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 209–231.

    Google Scholar 

  • Franklin, J. L., 2009: 2008 National Hurricane Center forecast verification report. [Available online at http://www.nhc.noaa.gov/verification]

    Google Scholar 

  • Jiang, Z. N., and D. H. Wang, 2010: A study on precursors to blocking anomalies in climatological flows by using conditional nonlinear optimal perturbations. Quart. J. Roy. Meteor. Soc., 136, 1170–1180.

    Google Scholar 

  • Jiang, Z. N., and D. H. Wang, 2011: Conditional nonlinear optimal perturbations: Behaviour during the evolution of cold vortices over northeast China. Quart. J. Roy. Meteor. Soc., 138, 198–208.

    Article  Google Scholar 

  • Jiang, Z. N., M. Mu, and D. H. Wang, 2011: Optimal perturbations triggering weather regime transitions: Onset of blocking and strong zonal flow. Adv. Atmos. Sci., 28(1), 59–68, doi: 10.1007/s00376-010-9097-0.

    Article  Google Scholar 

  • Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2007: Upper-ocean thermal structure and theWestern North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 3288–3306.

    Article  Google Scholar 

  • Lin, I. I., I. F. Pun, and C. C. Wu, 2008: Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 3744–3757.

    Article  Google Scholar 

  • Mu, M., and Z. Y. Zhang, 2006: Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci., 63, 1587–1604.

    Article  Google Scholar 

  • Mu, M., and Z. N. Jiang, 2011: Similarities between optimal precursors that trigger the onset of blocking events and optimally growing initial errors in onset prediction. J. Atmos. Sci., 68, 2860–2877, doi: 10.1175/JAS-D-11-037.1.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.

    Article  Google Scholar 

  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite-Amplitude perturbations. J. Phys. Oceanogr., 34, 2305–2315.

    Article  Google Scholar 

  • Mu, M., Duan, W. S., and Wang, B., 2007: Season-dependent dynamics of nonlinear optimal error growth and ENSO predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.

    Article  Google Scholar 

  • Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 1623–1639.

    Article  Google Scholar 

  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653.

    Article  Google Scholar 

  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508–2528.

    Article  Google Scholar 

  • Qin, X. H., and M. Mu, 2011a: A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139, 2218–2232.

    Article  Google Scholar 

  • Qin, X. H., and M. Mu, 2011b: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185–197.

    Article  Google Scholar 

  • Qin, X. H., W. S. Duan, and M. Mu, 2013: Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations. Quart. J. Roy. Meteor. Soc., 139, 1544–1554.

    Article  Google Scholar 

  • Sun, G. D., and M. Mu, 2009: Nonlinear feature of the abrupt transitions between multiple equilibria states of an ecosystem model. Adv. Atmos. Sci., 26(2), 293–304, doi: 10.1007/s00376-009-0293-8.

    Article  Google Scholar 

  • Sun, G. D., and M. Mu, 2011: Response of a grassland ecosystem to climate change in a theoretical model. Adv. Atmos. Sci., 28(6), 1266–1278, doi: 10.1007/s00376-011-0169-6.

    Article  Google Scholar 

  • Sun, G. D., and M. Mu, 2012: Inducing unstable grassland equilibrium states due to nonlinear optimal patterns of initial and parameter perturbations: Theoretical models. Adv. Atmos. Sci., 29(1), 79–90, doi: 10.1007/s00376-011-0226-1.

    Article  Google Scholar 

  • Sun, L., M. Mu, D. J. Sun, and X. Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi: 10.1029/2005JC002897.

    Google Scholar 

  • Sun, G. D., M. Mu, and Y. L. Zhang, 2010: Algorithm studies on how to obtain a conditional nonlinear optimal perturbation (CNOP). Adv. Atmos. Sci., 27(6), 1311–1321, doi: 10.1007/s00376-010-9088-1.

    Article  Google Scholar 

  • Wang, B., and X. W. Tan, 2009: A fast algorithm for solving CNOP and associated target observation tests. Acta Meteorologica Sinica, 23(4), 387–402.

    Google Scholar 

  • Wang, H. L., M. Mu, and X. Y. Huang, 2011: Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using the Weather Research Forecasting (WRF) model. Tellus, 63, 939–957.

    Article  Google Scholar 

  • Wang, Y. Q., and H. J. Cheng, 2008: A numerical investigation of the eyewall evolution in a Landfalling typhoon. Mon. Wea. Rev., 137, 21–40.

    Google Scholar 

  • Weng, Y. H., and F. Q. Zhang, 2012: Assimilating airborne doppler radar observations with an ensemble kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841–859.

    Article  Google Scholar 

  • Wu, C. C., and Coauthors, 2005: Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787–790.

    Article  Google Scholar 

  • Wu, C. C., K. H. Chou, P. H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 1157–1176.

    Article  Google Scholar 

  • Wu, C. C., Y. H. Huang, and G. Y. Lien, 2011: Concentric eyewall formation in typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the Ensemble Kalman Filter (EnKF). Mon. Wea. Rev., 140, 506–527.

    Article  Google Scholar 

  • Xu, J., and Y. Q., Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135–4157.

    Article  Google Scholar 

  • Yu, Y. S., W. S. Duan, H. Xu, and M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160.

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, and W. S. Duan, 2012a: Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak-Cane model? J. Climate, 25(4), 1263–1277.

    Article  Google Scholar 

  • Yu, Y. S., M. Mu, W. S. Duan, and T. T. Gong, 2012b: Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117, doi: 10.1029/2011JC007758.

  • Zeng, Z. H., Y. Q. Wang, and C. C. Wu, 2006: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 38–59.

    Article  Google Scholar 

  • Zhou, F. F., and M. Mu, 2011: The impact of verification area design on tropical cyclone targeted observations based on the CNOP method. Adv. Atmos. Sci., 28(5), 997–1010, doi: 10.1007/s00376-011-1003-x.

    Article  Google Scholar 

  • Zhou, F. F., and M. Mu, 2012a: The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions. Adv. Atmos. Sci., 29(1), 36–46, doi: 10.1007/s00376-012-1174-0.

    Article  Google Scholar 

  • Zhou, F. F., and M. Mu, 2012b: The time and regime dependencies of sensitive areas for tropical cyclone prediction using the CNOP method. Adv. Atmos. Sci., 29(4), 705–716, doi: 10.1175/MWR3278.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohao Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Mu, M. Can adaptive observations improve tropical cyclone intensity forecasts?. Adv. Atmos. Sci. 31, 252–262 (2014). https://doi.org/10.1007/s00376-013-3008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3008-0

Key words

Navigation