Skip to main content
Log in

The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the impacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 km, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005).

Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ancell, B. C., and C. F. Mass, 2006: Structure, growth rates, and tangent linear accuracy of adjoint sensitivities with respect to horizontal and vertical resolution. Mon. Wea. Rev., 134, 2971–2988.

    Article  Google Scholar 

  • Bergot, T., G. Hello, A. Joly, and S. Malardel, 1999: Adaptive observations: A feasibility study. Mon. Wea. Rev., 127, 743–765.

    Article  Google Scholar 

  • Birgin, E. G., J. E. Martinez, and R. Marcos, 2001: Algorithm 813: SPG-Software for convex-constrained optimization. ACM Transactions on Mathematical Software, 27, 340–349.

    Article  Google Scholar 

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.

    Article  Google Scholar 

  • Buizza, R., C. Cardinali, G. Kelly, and J. Thépaut, 2007: The value of targeted observations Part II: The value of observations taken in singular vectors-based target areas. Quart. J. Roy. Meteor. Soc., 133, 1817–1832.

    Article  Google Scholar 

  • Cardinali, C., R. Buizza, G. Kelly, M. Shapiro, and J-N. Thépaut, 2007: The value of observations. Part III: Influence of weather regimes on targeting. Quart. J. Roy. Meteor. Soc., 133, 1833–1842.

    Article  Google Scholar 

  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex rossby wave verification. J. Atmos. Sci, 58, 2128–2145.

    Article  Google Scholar 

  • Duan, W. S., and M. Mu, 2006: Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111, Co7015, doi: 10.1029/2005JC003458.

    Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.

    Article  Google Scholar 

  • Ehrendorfer, M., and R. M. Errico, 1995: Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci., 52, 3475–3500.

    Google Scholar 

  • Gall, R., J. Tuttle, and P. Hildebrand, 1998: Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126, 1749–1766.

    Article  Google Scholar 

  • Gelaro, R., T. Rosmond, and R. Daley, 2002: Singular vector calculations with an analysis error variance metric. Mon. Wea. Rev., 130(5), 1166–1186.

    Article  Google Scholar 

  • Gilmour, I., L. A. Smith, and R. Buizza, 2001: Linear regime duration: Is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sci., 58, 3525–3539.

    Article  Google Scholar 

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403.

    Article  Google Scholar 

  • Hamill, T. M., and C. Snyder, 2002: Using improved background-error covariance from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 1552–1572.

    Article  Google Scholar 

  • Langland, R. H., 1999: Workshop on targeted observations for extratropical and tropical forecasting. Bull. Amer. Meteor. Soc., 80, 2331–2338.

    Article  Google Scholar 

  • Leutbecher, M., J. Barkmeijer, T. N. Palmer, and A. J. Thorpe, 2002: Potential improvement to forecasts of two severe storms using targeted observations. Quart. J. Roy. Meteor. Soc., 128, 1641–1670.

    Article  Google Scholar 

  • Majumdar, S. J., S. D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng, and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 2354–2372.

    Article  Google Scholar 

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 535–565.

    Article  Google Scholar 

  • Moller, J. D., and M. T. Montgomery, 2000: Tropical cy clone evolution via potential vorticity anomalies in a three-dimensional balance Model. J. Atmos. Sci, 57, 3366–3387.

    Article  Google Scholar 

  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci, 67, 1779–1805, doi: 10.1175/2010JAS3171.1.

    Article  Google Scholar 

  • Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 747–749.

    Google Scholar 

  • Mu, M., and Z. Y. Zhang, 2006: Conditional nonlinear optimal perturbations of a barotropic model. J. Atmos. Sci., 63, 1587–1604.

    Article  Google Scholar 

  • Mu, M., and Z. N. Jiang, 2008: A new method to generate the initial perturbations in ensemble forecast: conditional nonlinear optimal perturbations. Chinese Science Bulletin, 53, 2062–2068S.

    Article  Google Scholar 

  • Mu, M., L. Sun, and D. A. Hank, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations. J. Phys. Oceanogr., 34, 2305–2315.

    Article  Google Scholar 

  • Mu, M., H. L. Wang, and F. F. Zhou, 2007a: A preliminary application of Conditional Nonlinear Optimal Perturbation to adaptive observation. Chinese J. Atmos. Sci., 31, 1102–1112. (in Chinese)

    Google Scholar 

  • Mu, M., H. Xu, and W. S. Duan, 2007b: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., doi: 10.1029/2006GL027412.

  • Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 1623–1639.

    Article  Google Scholar 

  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653.

    Article  Google Scholar 

  • Rivier, O., G. Lapeyre, and O. Talagrand, 2008: Nonlinear generalization of singular vectors: Behavior in a baroclinic unstable flow. J. Atmos. Sci, 65, 1896–1911.

    Article  Google Scholar 

  • Sun, L., M. Mu, D. J. Sun, and X. Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi: 10.1029/2005JC002897.

    Article  Google Scholar 

  • Tan, X. W., B. Wang, and D. L. Wang, 2010: Impact of different guidances on sensitive areas of targeting observations based on the CNOP method. Acta Meteorologica Sinica, 24, 17–30.

    Google Scholar 

  • Terwisscha van Scheltinga, A. D., and H. A. Dijkstra, 2008: Conditional nonlinear optimal perturbations of the double-gyre ocean circulation. Nonlinear Processes Geophysics, 15, 727–734.

    Article  Google Scholar 

  • Wu, C. C., J. H. Chen, P. H. Lin, and K. H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611–2626.

    Article  Google Scholar 

  • Wang, B., and X. W. Tan, 2010: Conditional nonlinear optimal perturbations: adjoint-free calculation method and preliminary test. Mon. Wea. Rev., 138, 1043–1049.

    Article  Google Scholar 

  • Wu, C. C., and Coauthors, 2009: Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific. Mon. Wea. Rev., 137, 2471–2492.

    Article  Google Scholar 

  • Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C. C. Wu, 2009: An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev., 137, 2801–2816.

    Article  Google Scholar 

  • Yu, Y. S., W. S. Duan, H. Xu, M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, doi: 10.1002/qj.526.

  • Zou, X., F. Vandenberghe, M. Pondeca, and Y.-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note, NCAR/TN-435-STR, 107pp.

  • Zhou, F. F., and M. Mu, 2011: The impact of verification area design on tropical cyclone targeted observations based on the CNOP method. Adv. Atmos. Sci., 28, 997–1010, doi: 10.1007/s00376-011-0120-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifan Zhou  (周菲凡).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Mu, M. The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions. Adv. Atmos. Sci. 29, 36–46 (2012). https://doi.org/10.1007/s00376-011-1003-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-1003-x

Key words

Navigation