Skip to main content
Log in

Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

To identify plant growth promotion ability of phosphorus-solubilizing native bacteria, we have examined a collection of isolates representing the diversity of culturable phosphate-solubilizing bacteria from acid soils of the northeast of Argentina. Assays in growth medium supplemented with tricalcium phosphate revealed different phosphorus solubilization activity and temporal patterns of solubilization. Acidification of the broth medium coincided with phosphorus solubilization. The isolates were grouped according to their Rep fingerprinting profiles and phylogenetically classified by 16S rDNA and biochemical analyses. These isolates were assigned to the genera Enterobacter, Pantoea, Pseudomonas, Acinetobacter, Burkholderia, and Exiguobacterium. Four isolates showing high phosphorus solubilizing activity in in vitro assays were inoculated on common beans (Phaseolus vulgaris); some of them promoted plant growth and increased photosynthesis and the P and N content of leaves. The results indicated that the ability to in vitro solubilize P is not necessarily associated to the promotion of plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alippi AM, Aguilar OM (1998) Characterization of isolates of Paenibacillus larvae subsp. larvae from diverse geographical origin by the polymerase chain reaction and BOX primers. J Invertebr Pathol 72:21–27

    Article  CAS  PubMed  Google Scholar 

  • Arnon DJ, Hoagland DR (1940) Crop production in artificial culture solution with special reference to factors influencing yields absorption of inorganic nutrients. Soil Sci 60:463–485

    Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, UK, pp 103–115

    Google Scholar 

  • Bielski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  Google Scholar 

  • Bosshard PP, Zbinden R, Abels S, Böddinghaus B, Altwegg M, Böttger EC (2006) 16S rRNA gene sequencing versus the API 20 NE System and the VITEK 2 ID-GNB Card for identification of non-fermenting gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Total nitrogen. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. Agronomy, ASA, Madison, pp 595–623

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 249:291–363

    Google Scholar 

  • Campbell CD, Sage RF (2006) Interactions between the effect of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ 29:844–853

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Fearnside PM (1998) Phosphorous and human carrying capacity in Brazilian Amazonia. In: Lynch JP, Deikman J (eds) Phosphorous in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society Plant Physiology, Rockville, pp 94–108

    Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velazquez E, Rodriguez-Barrueco C (eds) First International Meeting on Microbial phosphate solubilization. Springer, Dordrecht, pp 91–96

    Chapter  Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology 5:72–74

    Article  CAS  Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    Article  CAS  PubMed  Google Scholar 

  • Guiñazu LB, Andres JA, Del Papa MF, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilising bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of Seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Naresh Kumar G (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilisation by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham M, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  Google Scholar 

  • Hesse PR (1971) Soil phosphorus: its measurements and its uptake by plants. Aust J Soil Res 35:227–239

    Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora M (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kampfer P (2007) Taxonomy of phosphate solubilizing bacteria. In: Velazquez E, Rodriguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization. Springer, Dordrecht, pp 101–106

    Chapter  Google Scholar 

  • Li J, Ovakim DH, Charles TC, Glick BR (2000) An Acc deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Mikanová O, Nováková J (2002) Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostl Výroba 48:97–400

    Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230. doi:10.1186/1471-2180-8-230

    Article  PubMed  Google Scholar 

  • Nautiyal C (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Pal S (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Article  CAS  Google Scholar 

  • Pérez E, Sulbarán M, Ball M, Yarzábal L (2007) Isolation and characterization of mineral-phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  Google Scholar 

  • Perrig D, Boiero L, Masciarelli O, Penna C, Cassán F, Luna V (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC (1998) Metabolic aspects of phosphate starvation in plants. In: Lynch JP, Deikman J (eds) Phosphorous in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society Plant Physiology, Rockville, pp 229–241

    Google Scholar 

  • Rao IM, Terry N (1995) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiol 107:1313–1321

    CAS  PubMed  Google Scholar 

  • Reich P, Oleksyn J, Wright I (2009) Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212. doi:10.1007/s00442-009-1291-3

    Article  PubMed  Google Scholar 

  • Richardson A (2001) Prospect for using soil microorganisms to improve the acquisition of phosphorous by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rivas R, Reix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Bashan Y (2006) Genetics of phosphate solubilization and potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    Article  CAS  PubMed  Google Scholar 

  • Tiessen H, Lo Monaco S, Ramirez A, Santos MDC, Shang C (1996) Phosphate minerals in a lateritic crust from Venezuela. Biogeochemistry 34:8–17

    Article  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Warren CR, McGrath JF, Adams MA (2005) Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles. Ann For Sci 62:1–8

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Whitehead D, Boelman NT, Turnbull MH, Griffin KL, Tissue DT, Barbour MM, Hunt JE, Richardson SJ, Peltzer DA (2005) Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. Oecologia 144:233–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Chandra Nautiyal, NBRI, Lucknow, India, for kindly gifting us Pseudomonas RHP3 strain. Thanks also to Belén Burdyn for the technical support. This work was supported by a grant from Agencia de Promoción Científica y Tecnológica de Argentina. M.M.C., P.A.S., L.A.M., and O.M.A. were supported by The National Scientific and Technical Research Council-CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mario Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collavino, M.M., Sansberro, P.A., Mroginski, L.A. et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46, 727–738 (2010). https://doi.org/10.1007/s00374-010-0480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0480-x

Keywords

Navigation