Skip to main content
Log in

Three-dimensional reconstruction using multiresolution photoclinometry by deformation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a new photoclinometric reconstruction method based on the deformation of a 3D mesh. The optimization process of our method relies on a maximum-likelihood estimation with a density function measuring discrepancies between observed images and the corresponding synthetic images calculated from the progressively deformed 3D mesh. An input mesh is necessary and can be obtained from other methods or created by implementing a multiresolution scheme. We present a 3D shape model of an asteroid obtained by this method and compare it with the models obtained with two high-resolution 3D reconstruction techniques, stereophotogrammetry, and stereophotoclinometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Botsch, M., et al.: Geometric Modeling Based on Polygonal Meshes. ACM, New York (2007)

    Google Scholar 

  2. Briggs, W., McCormick, S.: Multigrid Methods. Frontiers in Applied Mathematics. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  3. Byrd, R., Nocedal, J., Schnabel, R.: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Program. 63(4), 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaskell, R., et al.: Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43, 1049–1061 (2008)

    Article  Google Scholar 

  5. Giese, B., Oberst, J., Kirk, R., Zeitler, W.: The topography of asteroid ida: a comparison between photogrammetric and two-dimensional photoclinometric image analysis. Int. Arch. Photogramm. Remote Sens. XXXI, 245–250 (1996)

    Google Scholar 

  6. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  7. Girardeau-Montaut, D., et al.: Change detection on points cloud data acquired with a ground laser scanner. In: ISPRS Workshop Laser Scanning III/3, pp. 30–35 (2005)

    Google Scholar 

  8. Gwinner, K., et al.: Derivation and validation of highresolution digital terrain models from mars express HRSC-data. Photogramm. Eng. Remote Sens. Sens, 1127–1142 (2007)

    Google Scholar 

  9. Jorda, L., Spjuth, S., Keller, H.U., Lamy, P., Llebaria, A.: OASIS: a simulator to prepare and interpret remote imaging of solar system bodies. Proc. SPIE 7533, 12 (2010)

    Google Scholar 

  10. Lamy, P.L., Faury, G., Jorda, L., Kaasalainen, M., Hviid, S.F.: Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations. Astron. Astrophys. 521, 19 (2010)

    Article  Google Scholar 

  11. Lohse, V., Heipke, C., Kirk, R.L.: Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. 54, 661–674 (2006)

    Article  Google Scholar 

  12. Loop, C.T.: Smooth Subdivision Surfaces Based on Triangles. M.S. thesis, University of Utah (1987)

  13. Morales, J.L., Nocedal, J.: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 38(1), 1–4 (2011)

    Article  MathSciNet  Google Scholar 

  14. More, J.: The Levenberg–Marquardt algorithm: implementation and theory. In: Numerical Analysis, vol. 630, pp. 105–116 (1978)

    Chapter  Google Scholar 

  15. Peleg, S., Ron, G.: Nonlinear multiresolution: a shape-from-shading example. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1206–1210 (1990)

    Article  Google Scholar 

  16. Prados, E., Faugeras, O., Camilli, F.: Shape from shading: a well-posed problem? Research report 5297, Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis, France (2004)

  17. Preusker, F., et al.: The northern hemisphere of asteroid 21 Lutetia topography and orthoimages from Rosetta OSIRIS NAC image data. Planet. Space Sci. 66, 54–63 (2012)

    Article  Google Scholar 

  18. Rindfleisch, T.: Photometric method for lunar topography. Photogramm. Eng. 32(2), 262–277 (1966)

    Google Scholar 

  19. Samavati, F., Pakdel, H., Smith, C., Prusinkiewicz, P.: Reverse Loop Subdivision. Technical report 2003-730-33, University of Calgary (2003)

  20. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2001)

    Article  Google Scholar 

  21. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. CVPR, pp. 519–528 (2006)

    Google Scholar 

  22. Sierks, H., et al.: Images of asteroid 21 Lutetia: a Remnant planetesimal from the Early Solar System. Science 334, 487–490 (2011)

    Article  Google Scholar 

  23. Szalay, A., et al.: Indexing the sphere with the hierarchical triangular mesh. Technical report MSR-TR-2005-123, Microsoft Research (2005)

  24. Tarini, M., Callieri, M., Montani, C., Rocchini, C.: Marching intersections: an efficient approach to shape-from-silhouette. In: Conference on Vision, Modeling, and Visualization Proceedings, pp. 255–262 (2002)

    Google Scholar 

  25. Terzopoulos, D.: Efficient Multiresolution Algorithms for Computing Lightness, Shape-from-Shading, and Optical Flow, AAAI-84 Proceedings (1984)

  26. Wu, C., Wilburn, B., Matsushita, Y., Theobalt, C.: High-quality shape from multi-view stereo and shading under general illumination. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 969–976 (2011)

    Google Scholar 

  27. Zhang, R., Tsai, P., Edwin, J., Shah, M.: Shape from shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Capanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capanna, C., Gesquière, G., Jorda, L. et al. Three-dimensional reconstruction using multiresolution photoclinometry by deformation. Vis Comput 29, 825–835 (2013). https://doi.org/10.1007/s00371-013-0821-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0821-5

Keywords

Navigation