Skip to main content

A Comprehensive Introduction to Photometric 3D-Reconstruction

  • Chapter
  • First Online:
Advances in Photometric 3D-Reconstruction

Abstract

Photometric 3D-reconstruction techniques aim at inferring the geometry of a scene from one or several images, by inverting a physical model describing the image formation. This chapter presents an introductory overview of the main photometric 3D-reconstruction techniques which are shape-from-shading, photometric stereo and shape-from-polarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fluxdata.com/products/fd-1665p-imaging-polarimeter.

  2. 2.

    https://www.ricoh.com/technology/tech/051_polarization.

References

  1. Adelson EH, Pentland AP (1996) The perception of shading and reflectance. In: Perception as Bayesian inference. Cambridge University Press, Cambridge, pp 409–423

    Google Scholar 

  2. AliceVision. https://alicevision.org/

  3. Atkinson GA, Hancock ER (2005) Multi-view surface reconstruction using polarization. In: Proceedings of the IEEE international conference on computer vision 1:309–316

    Google Scholar 

  4. Atkinson GA, Hancock ER (2006) Recovery of surface orientation from diffuse polarization. IEEE Trans Image Process 15(6):1653–1664

    Google Scholar 

  5. Atkinson GA, Hancock ER (2007) Shape estimation using polarization and shading from two views. IEEE Trans Pattern Anal Mach Intell 29(11):2001–2017

    Google Scholar 

  6. Atkinson GA, Hancock ER (2007) Surface reconstruction using polarization and photometric stereo. In: Proceedings of the international conference on computer analysis of images and patterns, pp 466–473

    Google Scholar 

  7. Bähr M, Breuß M, Quéau Y, Boroujerdi AS, Durou J-D (2017) Fast and accurate surface normal integration on non-rectangular domains. Comput Vis Media 3(2):107–129

    Google Scholar 

  8. Barles G (1994) Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques et Applications, vol 17. Springer, Berlin

    Google Scholar 

  9. Barron JT, Malik J (2015) Shape, illumination, and reflectance from shading. IEEE Trans Pattern Anal Mach Intell 37(8):1670–1687

    Google Scholar 

  10. Bartoli A, Gérard Y, Chadebecq F, Collins T, Pizarro D (2015) Shape-from-template. IEEE Trans Pattern Anal Mach Intell 37(10):2099–2118

    Google Scholar 

  11. Basri R, Jacobs D, Kemelmacher I (2007) Photometric stereo with general, unknown lighting. Int J Comput Vis 72(3):239–257

    Google Scholar 

  12. Belhumeur PN, Kriegman DJ, Yuille AL (1999) The Bas-relief ambiguity. Int J Comput Vis 35(1):33–44

    Google Scholar 

  13. Berger K, Voorhies R, Matthies L (2016) Incorporating polarization in stereo vision-based 3D perception of non-Lambertian scenes. In: Unmanned systems technology XVIII. Proceedings of the SPIE, vol 9837, p. 98370P

    Google Scholar 

  14. Berger K, Voorhies R, Matthies LH (2017) Depth from stereo polarization in specular scenes for urban robotics. In: Proceedings of the international conference on robotics and automation, pp 1966–1973

    Google Scholar 

  15. Brady M, Yuille AL (1984) An extremum principle for shape from contour. IEEE Trans Pattern Anal Mach Intell 6(3):288–301

    MATH  Google Scholar 

  16. Breuß M, Cristiani E, Durou J-D, Falcone M, Vogel O (2012) Perspective shape from shading: ambiguity analysis and numerical approximations. SIAM J Imaging Sci 5(1):311–342

    MathSciNet  MATH  Google Scholar 

  17. Camilli F, Grüne L (2000) Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations. SIAM J Numer Anal 38(5):1540–1560

    MathSciNet  MATH  Google Scholar 

  18. Camilli F, Tozza S (2017) A unified approach to the well-posedness of some non-Lambertian models in shape-from-shading theory. SIAM J Imaging Sci 10(1):26–46

    MathSciNet  MATH  Google Scholar 

  19. Chen G, Han K, Shi B, Matsushita Y, Wong K-YK (2019) Self-calibrating deep photometric stereo networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8739–8747

    Google Scholar 

  20. Chen L, Zheng Y, Subpa-Asa A, Sato I (2018) Polarimetric three-view geometry. In: Proceedings of the European conference on computer vision, pp 20–36

    Google Scholar 

  21. Clark JJ (2010) Photometric stereo using LCD displays. Image Vis Comput 28(4):704–714

    Google Scholar 

  22. Collins T, Bartoli A (2012) 3D-reconstruction in laparoscopy with close-range photometric stereo. In: International conference on medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 7511, pp 634–642

    Google Scholar 

  23. Courteille F, Durou J-D, Morin G (2006) A global solution to the SFS problem using B-spline surface and simulated annealing. In: Proceedings of the international conference on pattern recognition (volume II), pp 332–335

    Google Scholar 

  24. Crandall MG, Lions P-L (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Am Math Soc 277(1):1–42

    MathSciNet  MATH  Google Scholar 

  25. Cristiani E (2014) 3D printers: a new challenge for mathematical modeling. arXiv:1409.1714

  26. Cristiani E, Falcone M (2007) Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J Numer Anal 45(5):1979–2011

    MathSciNet  MATH  Google Scholar 

  27. Crouzil A, Descombes X, Durou J-D (2003) A multiresolution approach for shape from shading coupling deterministic and stochastic optimization. IEEE Trans Pattern Anal Mach Intell 25(11):1416–1421

    Google Scholar 

  28. Cui Z, Gu J, Shi B, Tan P, Kautz J (2017) Polarimetric multi-view stereo. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1558–1567

    Google Scholar 

  29. Daniel P, Durou J-D (2000) From deterministic to stochastic methods for shape from shading. In: Proceedings of the Asian conference on computer vision, pp 187–192

    Google Scholar 

  30. Durou J-D, Maître H (1996) On convergence in the methods of Strat and of Smith for shape from shading. Int J Comput Vis 17(3):273–289

    Google Scholar 

  31. Durou J-D, Falcone M, Sagona M (2008) Numerical methods for shape-from-shading: a new survey with benchmarks. Comput Vis Image Underst 109(1):22–43

    Google Scholar 

  32. Falcone M, Ferretti R (2014) Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  33. Falcone M, Ferretti R (2016) Numerical methods for Hamilton-Jacobi type equations. In: Handbook of numerical methods for hyperbolic problems. Handbook of numerical analysis, vol 17. Elsevier, Amsterdam, pp 603–626

    Google Scholar 

  34. Falcone M, Sagona M (1997) An algorithm for the global solution of the shape-from-shading model. In: International conference on image analysis and processing. Lecture notes in computer science, vol 1310, pp 596–603

    Google Scholar 

  35. Falcone M, Sagona M (2003) A scheme for the shape-from-shading model with “black shadows”. In: Numerical mathematics and advanced applications. Springer, Berlin, pp 503–512

    Google Scholar 

  36. Festa A, Falcone M (2014) An approximation scheme for an Eikonal equation with discontinuous coefficient. SIAM J Numer Anal 52(1):236–257

    Google Scholar 

  37. Frankot RT, Chellappa R (1988) A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal Mach Intell 10(4):439–451

    MATH  Google Scholar 

  38. Gallardo M, Collins T, Bartoli A (2017) Dense non-rigid structure-from-motion and shading with unknown albedos. In: Proceedings of the IEEE international conference on computer vision, pp 3884–3892

    Google Scholar 

  39. Geng J (2011) Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics 3(2):128–160

    Google Scholar 

  40. Gotardo PFU, Simon T, Sheikh Y, Matthews I (2015) Photogeometric scene flow for high-detail dynamic 3D reconstruction. In: Proceedings of the IEEE international conference on computer vision, pp 846–854

    Google Scholar 

  41. Haefner B, Quéau Y, Möllenhoff T, Cremers D (2018) Fight ill-posedness with ill-posedness: single-shot variational depth super-resolution from shading. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 164–174

    Google Scholar 

  42. Haefner B, Ye Z, Gao M, Wu T, Quéau Y, Cremers D (2019) Variational uncalibrated photometric stereo under general lighting. In: Proceedings of the IEEE international conference on computer vision, pp 8539–8548

    Google Scholar 

  43. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Hernández C (2004) Stereo and silhouette fusion for 3D object modeling from uncalibrated images under circular motion. Thèse de doctorat, École Nationale Supérieure des Télécommunications

    Google Scholar 

  45. Herrera SEM, Malti A, Morel O, Bartoli A (2013) Shape-from-polarization in laparoscopy. In: Proceedings of the international symposium on biomedical imaging, pp 1412–1415

    Google Scholar 

  46. Hertzmann A, Seitz SM (2005) Example-based photometric stereo: shape reconstruction with general, varying BRDFs. IEEE Trans Pattern Anal Mach Intell 27(8):1254–1264

    Google Scholar 

  47. Hold-Geoffroy Y, Gotardo P, Lalonde J-F (2019) Single day outdoor photometric stereo. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2962693

    Article  Google Scholar 

  48. Horn BKP (1970) Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. PhD thesis, MIT

    Google Scholar 

  49. Horn BKP, Brooks MJ (1986) The variational approach to shape from shading. Comput Vis Graph Image Process 33(2):174–208

    MATH  Google Scholar 

  50. Huynh CP, Robles-Kelly A, Hancock ER (2010) Shape and refractive index recovery from single-view polarisation images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1229–1236

    Google Scholar 

  51. Huynh CP, Robles-Kelly A, Hancock ER (2013) Shape and refractive index from single-view spectro-polarimetric images. Int J Comput Vis 101(1):64–94

    MathSciNet  Google Scholar 

  52. Ikehata S, Wipf D, Matsushita Y, Aizawa K (2012) Robust photometric stereo using sparse regression. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 318–325

    Google Scholar 

  53. Ikeuchi K, Horn BKP (1981) Numerical shape from shading and occluding boundaries. Artif Intell 17(1–3):141–184

    Google Scholar 

  54. Jancosek M, Pajdla T (2011) Multi-view reconstruction preserving weakly-supported surfaces. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3121–3128

    Google Scholar 

  55. Johnson MK, Adelson EH (2011) Shape estimation in natural illumination. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2553–2560

    Google Scholar 

  56. Ju Y-C, Tozza S, Breuß M, Bruhn A, Kleefeld A (2013) Generalised perspective shape from shading with Oren-Nayar reflectance. In: Proceedings of the British machine vision conference, pp 42.1–42.11

    Google Scholar 

  57. Kadambi A, Taamazyan V, Shi B, Raskar R (2015) Polarized 3D: high-quality depth sensing with polarization cues. In: Proceedings of the IEEE international conference on computer vision, pp 3370–3378

    Google Scholar 

  58. Kadambi A, Taamazyan V, Shi B, Raskar R (2017) Depth sensing using geometrically constrained polarization normals. Int J Comput Vis 125:34–51

    MathSciNet  Google Scholar 

  59. Kong N, Tai Y-W, Shin JS (2013) A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE Trans Pattern Anal Mach Intell 36(2):209–221

    Google Scholar 

  60. Kontsevich LL, Petrov AP, Vergelskaya IS (1994) Reconstruction of shape from shading in color images. J Opt Soc Am A 11(3):1047–1052

    Google Scholar 

  61. Langguth F, Sunkavalli K, Hadap S, Goesele M (2016) Shading-aware multi-view stereo. In: Proceedings of the European conference on computer vision, pp 469–485

    Google Scholar 

  62. Leclerc YG, Bobick AF (1991) The direct computation of height from shading. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 552–558

    Google Scholar 

  63. Li M, Zhou Z, Wu Z, Shi B, Diao C, Tan P (2020) Multi-view photometric stereo: a robust solution and benchmark dataset for spatially varying isotropic materials. IEEE Trans Image Process pp 4159–4173

    Google Scholar 

  64. Lions P-L, Rouy E, Tourin A (1993) Shape-from-shading, viscosity solutions and edges. Numer Math 64(1):323–353

    MathSciNet  MATH  Google Scholar 

  65. Logothetis F, Mecca R, Sgallari F, Cipolla R (2019) A differential approach to shape from polarisation: a level-set characterisation. Int J Comput Vis 127(11–12):1680–1693

    Google Scholar 

  66. Lyu Y, Cui Z, Li S, Pollefeys M, Shi B (2019) Reflection separation using a pair of unpolarized and polarized images. In: Advances in Neural Information Processing Systems 32, Curran Associates, Inc., pp 14559–14569

    Google Scholar 

  67. Mahmoud AH, El-Melegy MT, Farag AA (2012) Direct method for shape recovery from polarization and shading. In: Proceedings of the IEEE international conference on image processing, pp 1769–1772

    Google Scholar 

  68. Maurer D, Ju Y-C, Breuß M, Bruhn A (2018) Combining shape from shading and stereo: a joint variational method for estimating depth, illumination and albedo. Int J Comput Vis 126(12):1342–1366

    Google Scholar 

  69. Mecca R, Falcone M (2013) Uniqueness and approximation of a photometric shape-from-shading model. SIAM J Imaging Sci 6(1):616–659

    MathSciNet  MATH  Google Scholar 

  70. Mecca R, Wetzler A, Bruckstein A, Kimmel R (2014) Near field photometric stereo with point light sources. SIAM J Imaging Sci 7(4):2732–2770

    MathSciNet  MATH  Google Scholar 

  71. Mecca R, Quéau Y, Logothetis F, Cipolla R (2016) A single-lobe photometric stereo approach for heterogeneous material. SIAM J Imaging Sci 9(4):1858–1888

    MathSciNet  MATH  Google Scholar 

  72. Mélou J, Quéau Y, Castan F, Durou J-D (2019) A splitting-based algorithm for multi-view stereopsis of textureless objects. In: Proceedings of the international conference on scale space and variational methods in computer vision, pp 51–63

    Google Scholar 

  73. Miyazaki D, Kagesawa M, Ikeuchi K (2004) Transparent surface modeling from a pair of polarization images. IEEE Trans Pattern Anal Mach Intell 26(1):73–82

    Google Scholar 

  74. Miyazaki D, Saito M, Sato Y, Ikeuchi K (2002) Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths. J Opt Soc Am A 19(4):687–694

    Google Scholar 

  75. Miyazaki D, Shigetomi T, Baba M, Furukawa R, Hiura S, Asada N (2012) Polarization-based surface normal estimation of black specular objects from multiple viewpoints. In: Proceedings of the international conference on 3D imaging, modeling, processing, visualization and transmission, pp 104–111

    Google Scholar 

  76. Miyazaki D, Shigetomi T, Baba M, Furukawa R, Hiura S, Asada N (2016) Surface normal estimation of black specular objects from multiview polarization images. Opt Eng 56(4):041303

    Google Scholar 

  77. Miyazaki D, Tan RT, Hara K, Ikeuchi K (2003) Polarization-based inverse rendering from a single view. In: Proceedings of the IEEE international conference on computer vision, pp 982–987

    Google Scholar 

  78. Moons T, Van Gool L, Vergauwen M (2008) 3D reconstruction from multiple images, part 1: principles. Found Trends Comput Graph Vis 4(4):287–404

    Google Scholar 

  79. Morel O, Meriaudeau F, Stolz C, Gorria P (2005) Polarization imaging applied to 3D reconstruction of specular metallic surfaces. In: Machine vision applications in industrial inspection XIII. Proceedings of the SPIE, vol 5679, pp 178–186

    Google Scholar 

  80. Nayar S, Fang X, Boult T (1997) Separation of reflection components using color and polarization. Int J Comput Vis 21(3):163–186

    Google Scholar 

  81. Nayar SK, Nakagawa Y (1994) Shape from focus. IEEE Trans Pattern Anal Mach Intell 16(8):824–831

    Google Scholar 

  82. Nehab D, Rusinkiewicz S, Davis J, Ramamoorthi R (2005) Efficiently combining positions and normals for precise 3D geometry. ACM Trans Graph 24(3):536–543

    Google Scholar 

  83. Ngo TT, Nagahara H, Taniguchi R (2015) Shape and light directions from shading and polarization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2310–2318

    Google Scholar 

  84. Onn R, Bruckstein AM (1990) Integrability disambiguates surface recovery in two-image photometric stereo. Int J Comput Vis 5(1):105–113

    Google Scholar 

  85. Or-El R, Rosman G, Wetzler A, Kimmel R, Bruckstein A (2015) RGBD-fusion: real-time high precision depth recovery. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5407–5416

    Google Scholar 

  86. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied mathematical sciences, vol 153. Springer, Berlin

    Google Scholar 

  87. Peng S, Haefner B, Quéau Y, Cremers D (2017) Depth super-resolution meets uncalibrated photometric stereo. In: Proceedings of the IEEE international conference on computer vision workshops, pp 2961–2968

    Google Scholar 

  88. Pintus R, Dulecha TG, Ciortan I, Gobbetti E, Giachetti A (2019) State-of-the-art in multi-light image collections for surface visualization and analysis. Comput Graph Forum 38(3):909–934

    Google Scholar 

  89. Prados E, Faugeras O (2005) Shape from shading: a well-posed problem? Proceedings of the IEEE conference on computer vision and pattern recognition 2:870–877

    Google Scholar 

  90. Quéau Y, Mecca R, Durou J-D (2016) Unbiased photometric stereo for colored surfaces: a variational approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4359–4368

    Google Scholar 

  91. Quéau Y, Mecca R, Durou J-D, Descombes X (2017) Photometric stereo with only two images: a theoretical study and numerical resolution. Image Vis Comput 57:175–191

    Google Scholar 

  92. Quéau Y, Mélou J, Castan F, Cremers D, Durou J-D (2017) A variational approach to shape-from-shading under natural illumination. In: Proceedings of the international workshop on energy minimization methods in computer vision and pattern recognition, pp 342–357

    Google Scholar 

  93. Quéau Y, Wu T, Lauze F, Durou J-D, Cremers D (2017) A non-convex variational approach to photometric stereo under inaccurate lighting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 99–108

    Google Scholar 

  94. Quéau Y, Durix B, Wu T, Cremers D, Lauze F, Durou J-D (2018) LED-based photometric stereo: modeling, calibration and numerical solution. J Math Imaging Vis 60(3):313–340

    MathSciNet  MATH  Google Scholar 

  95. Quéau Y, Durou J-D, Aujol J-F (2018) Normal integration: a survey. J Math Imaging Vis 60(4):576–593

    MathSciNet  MATH  Google Scholar 

  96. Rahmann S, Canterakis N (2001) Reconstruction of specular surfaces using polarization imaging. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1

    Google Scholar 

  97. Robles-Kelly A, Huynh CP (2013) Imaging spectroscopy for scene analysis. Springer, Berlin

    Google Scholar 

  98. Santo H, Samejima M, Sugano Y, Shi B, Matsushita Y (2017) Deep photometric stereo network. In: Proceedings of the IEEE international conference on computer vision workshops, pp 501–509

    Google Scholar 

  99. Schechner YY (2011) Inversion by \(P^4\): polarization-picture post-processing. Philos Trans R Soc B: Biol Sci 366(1565):638–648

    Google Scholar 

  100. Schechner YY (2015) Self-calibrating imaging polarimetry. In: Proceedings of the IEEE international conference on computational photography

    Google Scholar 

  101. Schechner YY, Shamir J, Kiryati N (2000) Polarization and statistical analysis of scenes containing a semireflector. J Opt Soc Am A 17(2):276–284

    Google Scholar 

  102. Sengupta S, Kanazawa A, Castillo CD, Jacobs DW (2018) SfSNet: learning shape, reflectance and illuminance of faces in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6296–6305

    Google Scholar 

  103. Sethian JA (1999) Level set methods and fast marching methods. Cambridge monographs on applied and computational mathematics, vol 3, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  104. Shabayek AER, Demonceaux C, Morel O, Fofi D (2012) Vision based UAV attitude estimation: progress and insights. J Intell Robot Syst 65(1–4):295–308

    Google Scholar 

  105. Shafer SA, Kanade T (1983) Using shadows in finding surface orientations. Comput Vis Graph Image Process 22(1):145–176

    Google Scholar 

  106. Shi B, Tan P, Matsushita Y, Ikeuchi K (2013) Bi-polynomial modeling of low-frequency reflectances. IEEE Trans Pattern Anal Mach Intell 36(6):1078–1091

    Google Scholar 

  107. Shi B, Mo Z, Wu Z, Duan D, Yeung S, Tan P (2019) A benchmark dataset and evaluation for non-Lambertian and uncalibrated photometric stereo. IEEE Trans Pattern Anal Mach Intell 41(2):271–284

    Google Scholar 

  108. Shurcliff WA (1962) Polarized light, production and use. Harvard University Press, Harvard

    Google Scholar 

  109. Simchony T, Chellappa R, Shao M (1990) Direct analytical methods for solving Poisson equations in computer vision problems. IEEE Trans Pattern Anal Mach Intell 12(5):435–446

    MATH  Google Scholar 

  110. Smith WAP, Fang F (2016) Height from photometric ratio with model-based light source selection. Comput Vis Image Underst 145:128–138

    Google Scholar 

  111. Smith WAP, Ramamoorthi R, Tozza S (2016) Linear depth estimation from an uncalibrated, monocular polarisation image. In: European conference on computer vision. Lecture notes in computer science, vol 9912, pp 109–125

    Google Scholar 

  112. Smith WAP, Ramamoorthi R, Tozza S (2019) Height-from-polarisation with unknown lighting or albedo. IEEE Trans Pattern Anal Mach Intell 41(12):2875–2888

    Google Scholar 

  113. Soukup D, Huber-Mörk R (2014) Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International symposium on visual computing. Lecture notes in computer science, vol 8887, pp 668–677

    Google Scholar 

  114. Sun J, Smith M, Smith L, Coutts L, Dabis R, Harland C, Bamber J (2008) Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis. Skin Res Technol 14(2):173–179

    Google Scholar 

  115. Szeliski R (1991) Fast shape from shading. Comput Vis Graph Image Process: Image Underst 53(2):129–153

    MATH  Google Scholar 

  116. Taamazyan V, Kadambi A, Raskar R (2016) Shape from mixed polarization. arXiv:1605.02066

  117. Tankus A, Sochen N, Yeshurun Y (2003) A new perspective [on] shape-from-shading. In: Proceedings of the IEEE international conference on computer vision 2:862–869

    Google Scholar 

  118. Tozza S, Falcone M (2016) Analysis and approximation of some shape-from-shading models for non-Lambertian surfaces. J Math Imaging Vis 55(2):153–178

    MathSciNet  MATH  Google Scholar 

  119. Tozza S, Mecca R, Duocastella M, Del Bue A (2016) Direct differential photometric stereo shape recovery of diffuse and specular surfaces. J Math Imaging Vis 56(1):57–76

    MathSciNet  MATH  Google Scholar 

  120. Tozza S, Smith WAP, Zhu D, Ramamoorthi R, Hancock ER (2017) Linear differential constraints for photo-polarimetric height estimation. In: Proceedings of the IEEE international conference on computer vision, pp 2298–2306

    Google Scholar 

  121. Tuchin VV, Wang L, Zimnyakov DA (2006) Optical polarization in biomedical applications. Springer Science & Business Media, New York

    Google Scholar 

  122. Vogiatzis G, Hernández C, Cipolla R (2006) Reconstruction in the round using photometric normals and silhouettes. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2:1847–1854

    Google Scholar 

  123. White R, Forsyth D (2006) Combining cues: shape from shading and texture. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2:1809–1816

    Google Scholar 

  124. Wieschollek P, Gallo O, Gu J, Kautz J (2018) Separating reflection and transmission images in the wild. In: Proceedings of the European conference on computer vision, pp 89–104

    Google Scholar 

  125. Witkin AP (1981) Recovering surface shape and orientation from texture. Artif Intell 17(1–3):17–45

    Google Scholar 

  126. Wolff LB (1990) Surface orientation from two camera stereo with polarizers. In: Optics, illumination, and image sensing for machine vision IV. Proceedings of the SPIE, vol 1194, pp 287–298

    Google Scholar 

  127. Wolff LB (1997) Polarization vision: a new sensory approach to image understanding. Image Vis Comput 15(2):81–93

    Google Scholar 

  128. Wolff LB, Boult TE (1991) Constraining object features using a polarization reflectance model. IEEE Trans Pattern Anal Mach Intell 13(7):635–657

    Google Scholar 

  129. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):134–144

    Google Scholar 

  130. Worthington PL, Hancock ER (1999) Needle map recovery using robust regularizers. Image Vis Comput 17(8):545–557

    Google Scholar 

  131. Wu L, Ganesh A, Shi B, Matsushita Y, Wang Y, Ma Y (2010) Robust photometric stereo via low-rank matrix completion and recovery. In: Proceedings of the Asian conference on computer vision, pp 703–717

    Google Scholar 

  132. Yang L, Tan F, Li A, Cui Z, Furukawa Y, Tan P (2018) Polarimetric dense monocular SLAM. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3857–3866

    Google Scholar 

  133. Yuille AL, Snow D, Epstein R, Belhumeur PN (1999) Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability. Int J Comput Vis 35(3):203–222

    Google Scholar 

  134. Zhang R, Tsai P-S, Cryer JE, Shah M (1999) Shape-from-shading: a survey. IEEE Trans Pattern Anal Mach Intell 21(8):690–706

    MATH  Google Scholar 

  135. Zhu D, Smith WAP (2019) Depth from a polarisation + RGB stereo pair. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7586–7595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Denis Durou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durou, JD., Falcone, M., Quéau, Y., Tozza, S. (2020). A Comprehensive Introduction to Photometric 3D-Reconstruction. In: Durou, JD., Falcone, M., Quéau, Y., Tozza, S. (eds) Advances in Photometric 3D-Reconstruction. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-51866-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51866-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51865-3

  • Online ISBN: 978-3-030-51866-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics