Skip to main content
Log in

Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The nutritional requirements for phenazine-1-carboxylic acid (PCA) production using Pseudomonas sp. M18G, a gacA chromosomal-inactivated mutant of the strain M18, with a high PCA yield, were optimized statistically in shake flask experiments. Based on a single-factor experiment design, we implemented the two-level Plackett–Burman (PB) design with 11 variables to screen medium components that significantly influence PCA production. Soybean meal, glucose, soy peptone, and ethanol were identified as the most important significant factors (P < 0.05). Response surface methodology based on the Center Composite Design (CCD) was applied to determine these factors’ optimal levels and their mutual interactions between components for PCA production. The predicted results showed that 1.89 g l−1 of PCA production was obtained after a 60-h fermentation period, with optimal concentrations of soybean meal powder (33.4 g l−1), glucose (12.7 g l−1), soy peptone (10.9 g l−1), and ethanol (13.8 ml l−1) in the flask fermentations. The validity of the model developed was verified, and the optimum medium led to a maximum PCA concentration of 2.0 g l−1, a nearly threefold increase compared to that in the basal medium. Furthermore, the experiment was scaled up in the 10 l fermentor and 2 g l−1 PCA productions were achieved in 48 h based on optimization mediums which further verified the practicability of this optimum strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Fattah YR, Saeed HM, Gohar YM, El-Baz MA (2005) Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem 40:1707–1714

    Article  CAS  Google Scholar 

  • Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Pharmacol Sci 5:281–287

    Google Scholar 

  • Chin-A-Woeng TFC et al (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microb Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.. Mol Plant Microbe Interact 14:1006–1015

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant-Microb Interact 18:244–253

    Article  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183:318–327

    Article  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    Article  CAS  Google Scholar 

  • Ge Y, Huang X, Wang S, Zhang X, Xu Y (2004) Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237:41–47

    Article  CAS  Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760

    Article  CAS  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4–80R. Appl Environ Microbiol 57:3270–3277

    Article  CAS  Google Scholar 

  • Himabindu M, Ravichandra P, Vishalakshi K, Jetty A (2006) Optimization of critical medium components for the maximal production of gentamicin by Micromonospora echinospora ATCC 15838 using response surface methodology. Appl Biochem Biotechnol 134:143–154

    Article  CAS  Google Scholar 

  • Hu HB, Yu QX, Feng C, Xue HZ, Hur BK (2005) Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol 15:86–90

    CAS  Google Scholar 

  • Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotech 23:456–475

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Jha B, Gohel V (2007) Statistical optimization of medium components for kappa-carrageenase production by Pseudomonas elongata. Enzyme Microb Technol 40:813–822

    Article  CAS  Google Scholar 

  • Lai LST, Pan CC, Tzeng BK (2003) The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem 38:1317–1326

    Article  CAS  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci 59:872–882

    Article  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS (1998) A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J Bacteriol 180:2541–2548

    Article  CAS  Google Scholar 

  • Mavrodi DV, Bleimling N, Thomashow LS, Blankenfeldt W (2004) The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2–79. Acta Crystallogr D Biol Crystallogr 60:184–186

    Article  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS 3rd (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    Article  CAS  Google Scholar 

  • Mizumoto S, Shoda M (2007) Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biotechnol 76:101–108

    Article  CAS  Google Scholar 

  • Parsons JF, Song F, Parsons L, Calabrese K, Eisenstein E, Ladner JE (2004) Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2–79. Biochem 43:12427–12435

    Article  CAS  Google Scholar 

  • Pierson LS 3rd, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol Plant Microbe Interact 5:330–339

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    Article  CAS  Google Scholar 

  • Shtark O, Shaposhnikov AI, Kravchenko LV (2003) The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources. Mikrobiologiia 72:645–650

    PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro. Lett Appl Microbiol 38:185–190

    Article  CAS  Google Scholar 

  • Slininger PJ, Jackson MA (1992) Nutritional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 37:388–392

    Article  CAS  Google Scholar 

  • Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 43:794–800

    Article  CAS  Google Scholar 

  • Tari C, Genckal H, Tokatli F (2006) Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp L21. Process Biochem 41:659–665

    Article  CAS  Google Scholar 

  • Timms-Wilson TM et al (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    Article  CAS  Google Scholar 

  • van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders IHM, Bloemberg GV, Lugtenberg BJJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant-Microbe Interact 16:1003–1012

    Article  Google Scholar 

  • van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact 17:557–566

    Article  Google Scholar 

  • Vohra A, Satyanarayana T (2002) Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem 37:999–1004

    Article  CAS  Google Scholar 

  • Wei WL, Zheng ZH, Liu YY, Zhu XS (1998) Optimizing the culture conditions for higher inulinase production by Kluyveromyces sp. Y-85 and scaling-up fermentation. J Ferment Bioeng 86:395–399

    Article  CAS  Google Scholar 

  • Xiao ZJ, Liu PH, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74:61–68

    Article  CAS  Google Scholar 

  • Yuan Z, Cang S, Matsufuji M, Nakata K, Nagamatsu Y, Yoshimoto A (1998) High production of pyoluteorin and 2,4-diacetylphloroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source. J Ferment Bioeng 86:559–563

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the 863 Programs of China (No. 2006AA10A209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Jiang, H., Xu, Y. et al. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77, 1207–1217 (2008). https://doi.org/10.1007/s00253-007-1213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1213-4

Keywords

Navigation