Skip to main content
Log in

Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett–Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH2PO4·3H2O, sodium acetate, MgSO4·7H2O, FeCl2, and MnCl2, in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.9 g l−1 acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.4 g l−1 of acetoin could be obtained after 56.4 h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adham NZ (2002) Attempts at improving citric acid fermentation by Aspergillus niger in beet-molasses medium. Bioresour Technol 84:97–100

    CAS  PubMed  Google Scholar 

  • Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 34:582–585

    CAS  Google Scholar 

  • Atiyeh H, Duvnjak Z (2002) Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858. Biotechnol Prog 18:234–239

    CAS  PubMed  Google Scholar 

  • Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20:1366–1371

    CAS  PubMed  Google Scholar 

  • Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51

    CAS  PubMed  Google Scholar 

  • Bassit N, Boquien CY, Picque D, Corrieu G (1993) Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol 59:1893–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassit N, Boquien CY, Picque D, Corrieu G (1995) Effect of temperature on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar. diacetylactis CNRZ 483. J Dairy Res 62:123–129

    CAS  Google Scholar 

  • Boumerdassi H, Monnet C, Desmazeaud M, Corrieu G (1997) Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Appl Environ Microbiol 63:2293–2299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branen AL, Keenan TW (1971) Diacetyl and acetoin production by Lactobacillus casei. Appl Microbiol 22:517–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cañas A, Owens JD (1999) Acetoin production in growing Leuconostoc mesenteroides. World J Microbiol Biotechnol 15:339–344

    Google Scholar 

  • Carvalho JCM, Vitolo M, Sato S, Aquarone E (2003) Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a fed-batch process: optimization by response surface methodology. Appl Biochem Biotechnol 110:151–164

    CAS  PubMed  Google Scholar 

  • Chen QH, He GQ, Ali MAM (2002) Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb Technol 30:667–672

    CAS  Google Scholar 

  • Chen X, Chen S, Sun M, Yu Z (2005) Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate. Appl Microbiol Biotechnol 69:390–396

    Google Scholar 

  • Collins EB, Speckman RA (1974) Influence of acetaldehyde on growth and acetoin production by Leuconostoc citrovorum. J Dairy Sci 57:1428–1431

    CAS  PubMed  Google Scholar 

  • Cromwell GL, Calvert CC, Cline TR, Crenshaw JD, Crenshaw TD, Easter RA, Ewan RC, Hamilton CR, Hill GM, Lewis AJ, Mahan DC, Miller ER, Nelssen JL, Pettigrew JE, Tribble LF, Veum TL, Yen JT (1999) Variability among sources and laboratories in nutrient analyses of corn and soybean meal. J Anim Sci 77:3262–3273

    CAS  PubMed  Google Scholar 

  • Dettwiler B, Dunn IJ, Heinzle E, Prenosil JE (1993) A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotechnol Bioeng 41:791–800

    CAS  PubMed  Google Scholar 

  • Faveri DD, Torre P, Molinari F, Perego P, Converti A (2003) Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hansenii. Enzyme Microb Technol 33:708–719

    Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109

    CAS  Google Scholar 

  • Garibaldi JA, Bayne HG (1970) Production of acetoin and diacetyl by the genus Salmonella. Appl Microbiol 20:855–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KG, Yadav NK, Dhawan S (1978) Laboratory-scale production of acetoin plus diacetyl by Enterobacter cloacae ATCC 27613. Biotechnol Bioeng 20:1895–1901

    CAS  PubMed  Google Scholar 

  • Hrčková M, Rusňáková M, Zemanovič J (2002) Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech J Food Sci 20:7–14

    Google Scholar 

  • Ikram-Ul H, Ali S, Qadeer MA, Iqbal J (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour Technol 93:125–130

    CAS  PubMed  Google Scholar 

  • Kaneko T, Takahashi M, Suzuki H (1990) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol 56:2644–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296 DOI https://doi.org/10.1007/s00253-005-0265-6

    CAS  PubMed  Google Scholar 

  • Kwon S, Lee PC, Lee EG, Keun Chang Y, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb Technol 26:209–215

    CAS  PubMed  Google Scholar 

  • McCall KB, Georgi CE (1954) The production of 2,3-butanediol by fermentation of sugar beet molasses. Appl Microbiol 2:355–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR (1985) A microbial culture with oxygen sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol Bioeng 27:482–489

    CAS  PubMed  Google Scholar 

  • Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2, 3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:1133–1138

    CAS  Google Scholar 

  • Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Plackett–Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour Technol 96:485–490

    CAS  PubMed  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Google Scholar 

  • Poulsen C, Stougaard P (1989) Purification and properties of Saccharomyces cerevisiae acetolactate synthase from recombinant Escherichia coli. Eur J Biochem 185:433–439

    CAS  PubMed  Google Scholar 

  • Qin J, Xiao Z, Ma C, Xie N, Liu P, Xu P (2006) Production of 2,3-butanediol by Klebsiella Pneumoniae using glucose and ammonium phosphate. Chin J Chem Eng 14:132–136

    CAS  Google Scholar 

  • Romano P, Suzzi G, Zironi R, Comi G (1993) Biometric study of acetoin production in Hanseniaspora guilliermondii and Kloechera apiculata. Appl Environ Microbiol 59:1838–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romano P, Suzzi G, Mortimer R, Polsinelli M (1995) Production of high levels of acetoin in Saccharomyces cerevisiae wine yeasts is a recessive trait. J Appl Bacteriol 78:169–174

    CAS  PubMed  Google Scholar 

  • Romick TL, Fleming HP (1998) Acetoin production as an indicator of growth and metabolic inhibition of Listeria monocytogenes. J Appl Microbiol 84:18–24

    CAS  PubMed  Google Scholar 

  • Schmitt P, Diviès C (1992) Effect of varying citrate levels on C4 compound formation and on enzyme levels in Leuconostoc mesenteroides subsp. cremoris grown in continuous culture. Appl Microbiol Biotechnol 37:426–430

    CAS  Google Scholar 

  • Schmitt P, Vasseur C, Phalip V, Huang DQ, Divies C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Appl Microbiol Biotechnol 47:715–718

    CAS  PubMed  Google Scholar 

  • Teixeira RM, Cavalheiro D, Ninow JL, Furigo A Jr (2002) Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Braz J Chem Eng 19:181–186

    CAS  Google Scholar 

  • Tomita T, Ozawa T, Tomita I (1969) The cause of acetoin production by myo-inositol deficient Saccharomyces carlsbergensis. J Vitaminol 15:215–221

    CAS  Google Scholar 

  • Ui S, Masuda H, Muraki H (1983) Laboratory-scale production of 2,3-butanediol isomers (D(−), L(+), and Meso) by bacterial fermentations. J Ferment Technol 61:253–259

    CAS  Google Scholar 

  • Ui S, Masuda H, Muraki H (1984) Laboratory-scale production of acetoin isomers (D (−) and L (+)) by bacterial fermentation. J Ferment Technol 62:151–156

    CAS  Google Scholar 

  • Ui S, Mimura A, Okuma M, Kudo T (1998) The production of D-acetoin by a transgenic Escherichia coli. Lett Appl Microbiol 26:275–278

    CAS  PubMed  Google Scholar 

  • Van Handel E (1985) Rapid determination of glycogen and sugars in mosquitoes. J Am Mosq Control Assoc 1:299–301

    PubMed  Google Scholar 

  • Wu CFJ, Hamada M (2000) Experiments: planning, analysis, and parameter design optimization. Wiley, New York

    Google Scholar 

  • Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80:111–118

    CAS  PubMed  Google Scholar 

  • Yu EK, Saddler JN (1983) Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol 46:630–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng AP, Biebl H, Deckwer WD (1991) Production of 2,3-butanediol in a membrane bioreactor with cell recycle. Appl Microbiol Biotechnol 34:463–468

    CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of this work by Shanghai Apple Flavor & Fragrance (Shanghai, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z.J., Liu, P.H., Qin, J.Y. et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74, 61–68 (2007). https://doi.org/10.1007/s00253-006-0646-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0646-5

Keywords

Navigation