Skip to main content

Advertisement

Log in

Impact of air exposure on the photobiology and biochemical profile of an aggressive intertidal competitor, the zoanthid Palythoa caribaeorum

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The colonization of intertidal habitats is a challenging process. During low tide, many photosynthetic organisms, including symbiotic zoanthids, can be partially exposed to air eliciting significant physiological impairments, which may ultimately dictate the rate of colonization in such environments. Within this context, the present study aims to investigate, for the first time, the effects of air exposure on the fatty acid (FA) content and photobiological parameters of Palythoa caribaeorum, by comparing emerged and immersed polyps, within the same colony, during low tide. Tidal environment did not significantly affect FA percentages, but polyps that were emerged showed lower FA content than the immersed ones. Saturated FA fraction contributed the most to those dissimilarities, followed by the highly unsaturated and polyunsaturated FA fractions. Concomitantly, polyps that were permanently immersed displayed significantly higher values of the maximum quantum yield of photosystem II (F v/F m) when compared with emerged polyps. An opposite pattern was observed regarding the indices derived from the rapid light-response curves of relative electron transport rate (α, ETRmax and E k). We argue that FA differences within each colony seem to be a consequence of impairments in carbon production with photoautotrophic origin. Our findings also suggest that emerged polyps display higher efficiency in responding to rapid light fluctuation, which seems to be a peculiar adaptation to these challenging environments. Thus, in addition to its morphological plasticity, P. caribaeorum seems to display a large trophic plasticity that may be linked with the aggressive competitive nature for vital resources in such tidal habitats and widespread distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almoghrabi S, Allemand D, Couret JM, Jaubert J (1995) Fatty acids of the scleractinian coral Galaxea fascicularis—effect of light and feeding. J Comp Physiol B 165:183–192. doi:10.1007/BF00260809

    Google Scholar 

  • Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631. doi:10.1007/s00227-006-0573-0

    Article  Google Scholar 

  • Arts M, Brett M, Kainz M (eds) (2009) Lipids in aquatic ecosystems. Springer, New York. doi:10.1007/978-0-387-89366-2

    Google Scholar 

  • Ayyachamy S, Manivannan VS (2013) Medical image registration-based retrieval using distance metrics. Int J Imaging Syst Technol 23:360–371. doi:10.1002/ima.22068

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pastemak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298. doi:10.1016/j.jembe.2007.05.030

    Article  CAS  Google Scholar 

  • Bachok Z, Mfilinge P, Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25:545–554. doi:10.1007/s00338-006-0130-9

    Article  Google Scholar 

  • Baptista M, Lopes VM, Pimentel MS, Bandarra N, Narciso L, Marques A, Rosa R (2012) Temporal fatty acid dynamics of the octocoral Veretillum cynomorium. Comp Biochem Physiol B 161:178–187. doi:10.1016/j.cbpb.2011.11.002

    Article  CAS  Google Scholar 

  • Baptista M, Maulvault AL, Trübenbach K, Narciso L, Marques A, Rosa R (2013) Amino acids in the octocoral Veretillum cynomorium: the effect of seasonality and differences from scleractinian hexacorals. J Mar Biol Assoc UK 93:913–918. doi:10.1017/S0025315412000367

    Article  CAS  Google Scholar 

  • Berger MS, Emlet RB (2007) Heat-shock response of the upper intertidal barnacle Balanus glandula: thermal stress and acclimation. Biol Bull 212:232–241. doi:10.2307/25066605

    Article  CAS  Google Scholar 

  • Brett M, Müller-Navarra D, Persson J (2009) Crustacean zooplankton fatty acid composition. In: Arts M, Brett M, Kainz M (eds) Lipids in aquatic ecosystems. Springer, New York, pp 118–146

    Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Chavanich S, Wilson KA (2000) Rocky intertidal zonation of gammaridean amphipods in Long Island Sound, Connecticut. Crustaceana 73:835–846. doi:10.2307/20106347

    Article  Google Scholar 

  • Costa DL, Gomes PB, Santos AM, Valenca NS, Vieira NA, Perez CD (2011) Morphological plasticity in the reef zoanthid Palythoa caribaeorum as an adaptive strategy. Ann Zool Fenn 48:349–358

    Article  Google Scholar 

  • Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88:256–264. doi:10.1016/j.aquabot.2007.11.001

    Article  CAS  Google Scholar 

  • Dethier MN (1982) Pattern and process in tidepool algae—factors influencing seasonality and distribution. Bot Mar 25:55–66. doi:10.1515/botm.1982.25.2.55

    Article  Google Scholar 

  • Diaz-Almeyda E, Thome PE, El Hafidi M, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30:217–225. doi:10.1007/s00338-010-0691-5

    Article  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116. doi:10.3354/meps272099

    Article  Google Scholar 

  • Eakin CM, Glynn PW (1996) Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15:120

    Article  Google Scholar 

  • Fadlallah YH, Allen KW, Estudillo RA (1995) Mortality of shallow reef corals in the western Arabian Gulf following aerial exposure in winter. Coral Reefs 14:99–107. doi:10.1007/bf00303430

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611. doi:10.2307/1312147

    Article  Google Scholar 

  • Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral-Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485. doi:10.1007/s00338-011-0853-0

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65. doi:10.1007/s003380100146

    Article  Google Scholar 

  • Freites L, Fernandez-Reiriz MJ, Labarta U (2002) Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin. Comp Biochem Physiol B 132:453–461. doi:10.1016/s1096-4959(02)00057-x

    Article  Google Scholar 

  • Gustafsson MSM, Baird ME, Ralph PJ (2013) The interchangeability of autotrophic and heterotrophic nitrogen sources in scleractinian coral symbiotic relationships: a numerical study. Ecol Model 250:183–194. doi:10.1016/j.ecolmodel.2012.11.003

    Article  CAS  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404. doi:10.1146/annurev.ecolsys.37.091305.110149

    Article  Google Scholar 

  • Hill R (2013) Evidence of light-induced phenotypic plasticity in zoanthids: editorial comment on the feature article by Wei et al. Mar Biol 160:1051. doi:10.1007/s00227-013-2225-5

    Article  Google Scholar 

  • Horwitz R, Borell EM, Yam R, Shemesh A, Fine M (2015) Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci Rep. doi:10.1038/srep08779

    Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17. doi:10.1111/j.1469-185X.2008.00058.x

    Article  Google Scholar 

  • Houlbrèque F, Tambutte E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166

    Article  Google Scholar 

  • Huettel M, Wild C, Gonelli S (2006) Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Progr Ser 307:69–84

    Article  Google Scholar 

  • Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311. doi:10.1242/jeb.00399

    Article  CAS  Google Scholar 

  • Imbs AB (2013) Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol 39:153–168. doi:10.1134/s1063074013030061

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM (2012) Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31:41–53. doi:10.1007/s00338-011-0817-4

    Article  Google Scholar 

  • Imbs AB, Yakovleva IM, Latyshev NA, Pham LQ (2010) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ J Mar Biol 36:452–457. doi:10.1134/s1063074010060076

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochem 101:76–82. doi:10.1016/j.phytochem.2014.02.012

    Article  CAS  Google Scholar 

  • Johnson CR, Field CA (1993) Using fixed-effects model multivariate analysis of variance in marine biology and ecology. Oceanogr Mar Biol Annu Rev 31:177–221

    Google Scholar 

  • Kiørboe T (2000) Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol Oceanogr 45:479–484

    Article  Google Scholar 

  • Kneeland J, Hughen K, Cervino J, Hauff B, Eglinton T (2013) Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress. Coral Reefs 32:923–934. doi:10.1007/s00338-013-1076-3

    Article  Google Scholar 

  • Krupp DA (1984) Mucus production by corals exposed during an extreme low tide. Pac Sci 38(1):1–11

    Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201. doi:10.1016/j.envexpbot.2011.03.007

    Article  CAS  Google Scholar 

  • Latyshev NA, Naumenko NV, Svetashev VI, Latypov YY (1991) Fatty acids of reef-building corals. Mar Ecol Prog Ser 76:295–301. doi:10.3354/meps076295

    Article  CAS  Google Scholar 

  • Leal MC, Nunes C, Kempf S et al (2013) Effect of light, temperature and diet on the fatty acid profile of the tropical sea anemone Aiptasia pallida. Aquac Nutr 19:818–826. doi:10.1111/anu.12028

    Article  CAS  Google Scholar 

  • Leal MC, Ferrier-Pages C, Calado R, Thompson ME, Frischer ME, Nejstgaard JC (2014a) Coral feeding on microalgae assessed with molecular trophic markers. Mol Ecol 23:3870–3876. doi:10.1111/mec.12486

    Article  CAS  Google Scholar 

  • Leal MC, Nejstgaard JC, Calado R, Thompson ME, Frischer ME (2014b) Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians. Mol Ecol 23:3838–3848. doi:10.1111/mec.12496

    Article  CAS  Google Scholar 

  • Leal MC, Cruz ICS, Mendes CR et al (2015) Photobiology of the zoanthid Zoanthus sociatus in intertidal and subtidal habitats. Mar Fresh Res. doi:10.1071/MF15300

    Google Scholar 

  • Leggat W, Ainsworth TD, Dove S, Hoegh-Guldberg O (2006) Aerial exposure influences bleaching patterns. Coral Reefs 25:452. doi:10.1007/s00338-006-0128-3

    Article  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377. doi:10.1007/s00338-004-0392-z

    Article  Google Scholar 

  • Mashini AG, Parsa S, Mostafavi PG (2015) Comparison of Symbiodinium populations in corals from subtidal region and tidal pools of northern coasts of Hengam Island, Iran. J Exp Mar Biol Ecol 473:202–206. doi:10.1016/j.jembe.2015.09.007

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  Google Scholar 

  • Mendonca-Neto JP, da Gama BAP (2009) The native Palythoa caribaeorum overgrows on invasive species in the intertidal zone. Coral Reefs 28:497. doi:10.1007/s00338-008-0449-5

    Article  Google Scholar 

  • Metaxas A, Scheibling RE (1996) Spatial heterogeneity of phytoplankton assemblages in tidepools: effects of abiotic and biotic factors. Mar Ecol Prog Ser 130:179–199. doi:10.3354/meps130179

    Article  Google Scholar 

  • Miura O, Keawtawee T, Sato N, K-i Onodera (2014) Vertical zonation of endosymbiotic zooxanthellae within a population of the intertidal sea anemone, Anthopleura uchidai. Mar Biol 161:1745–1754. doi:10.1007/s00227-014-2456-0

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Ocean 26:601–611. doi:10.4319/lo.1981.26.4.0601

    Article  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Iwasaki H, Takara K (2002) Lipid distribution in branching coral Montipora digitata. Fish Sci 68:517–522. doi:10.1046/j.1444-2906.2002.00456.x

    Article  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85. doi:10.1007/s00338-003-0279-4

    Google Scholar 

  • Papina M, Meziane T, van Woesik R (2007) Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Comp Biochem Physiol B 147:583–589. doi:10.1016/j.cbpb.2007.02.011

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Pond DW, Bell MV, Harris RP, Sargent JR (1998) Microplanktonic polyunsaturated fatty acid markers: a mesocosm trial. Est Coast Shelf Sci 46:61–67. doi:10.1006/ecss.1998.0334

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Book  Google Scholar 

  • Rabelo EF, Soares MdO, Bezerra LEA, Matthews-Cascon H (2015) Distribution pattern of zoanthids (Cnidaria: Zoantharia) on a tropical reef. Mar Biol Res 11:584–592. doi:10.1080/17451000.2014.962542

    Article  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi:10.1016/j.aquabot.2005.02.006

    Article  CAS  Google Scholar 

  • Ralph P, Gademann R, Larkum A, Kühl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639–646

    Article  CAS  Google Scholar 

  • Rocha RJM, Calado R, Cartaxana P, Furtado J, Serôdio J (2013a) Photobiology and growth of leather coral Sarcophyton cf. glaucum fragments stocked under low light in a recirculated system. Aquaculture 414–415:235–242. doi:10.1016/j.aquaculture.2013.08.018

    Article  Google Scholar 

  • Rocha RJM, Serodio J, Leal MC, Cartaxana P, Calado R (2013b) Effect of light intensity on post-fragmentation photobiological performance of the soft coral Sinularia flexibilis. Aquaculture 388:24–29. doi:10.1016/j.aquaculture.2013.01.013

    Article  Google Scholar 

  • Rocha RJM et al (2015) Development of a standardized modular system for experimental coral culture. J World Aquac Soc 46:235–251. doi:10.1111/jwas.12186

    Article  Google Scholar 

  • Rodrigues LJ, Grottoli AG, Pease TK (2008) Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J Exp Mar Biol Ecol 358:136–143. doi:10.1016/j.jembe.2008.02.004

    Article  CAS  Google Scholar 

  • Romaine S, Tambutte E, Allemand D, Gattuso JP (1997) Photosynthesis, respiration and calcification of a zooxanthellate scleractinian coral under submerged and exposed conditions. Mar Biol 129:175–182. doi:10.1007/s002270050158

    Article  Google Scholar 

  • Rosa R, Calado R, Narciso L, Nunes ML (2007) Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: a fatty acid approach. Mar Biol 151:935–947. doi:10.1007/s00227-006-0535-6

    Article  Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol. doi:10.3389/fmicb.2014.00422

    Google Scholar 

  • Santos GS, Amaral FD, Sassi CFC, Schwamborn R (2016) Response of the zooxanthellae of Palythoa caribaeorum (Cnidaria: Zoanthidea) to different environmental conditions in coastal and oceanic ecosystems of the Tropical Atlantic. Helgol Mar Res 70:2. doi:10.1186/s10152-016-0454-y

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62. doi:10.1007/bf00024185

    Article  CAS  Google Scholar 

  • Schwertner HA, Mosser EL (1993) Comparison of lipid fatty acids on a concentration basis vs weight percentage basis in patients with and without coronary artery disease or diabetes. Clin Chem 39:659–663

    CAS  Google Scholar 

  • Shick JM, Dykens JA (1984) Photobiology of the symbiotic sea-anemone Anthopleura elegantissima—photosynthesis, respiration, and behavior under intertidal conditions. Biol Bull 166:608–619. doi:10.2307/1541166

    Article  CAS  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231. doi:10.1016/s1388-1981(00)00077-9

    Article  CAS  Google Scholar 

  • Tamura Y, Tsuchiya M (2011) Floating mucus aggregates derived from benthic microorganisms on rocky intertidal reefs: potential as food sources for benthic animals. Estuar Coast Shelf Sci 94:199–209

    Article  Google Scholar 

  • Teixeira T, Diniz M, Calado R, Rosa R (2013) Coral physiological adaptations to air exposure: heat shock and oxidative stress responses in Veretillum cynomorium. J Exp Mar Biol Ecol 439:35–41. doi:10.1016/j.jembe.2012.10.010

    Article  CAS  Google Scholar 

  • Thompson RC, Crowe TP, Hawkins SJ (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191. doi:10.1017/S0376892902000115

    Article  Google Scholar 

  • Tolosa I, Treignier C, Grover R, Ferrier-Pages C (2011) Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30:763–774. doi:10.1007/s00338-011-0753-3

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Ocean 53:2702–2710. doi:10.4319/lo.2008.53.6.2702

    Article  CAS  Google Scholar 

  • Treignier C, Tolosa I, Grover R, Reynaud S, Ferrier-Pages C (2009) Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: effect of light and feeding. Limnol Ocean 54:1933–1940. doi:10.4319/lo.2009.54.6.1933

    Article  CAS  Google Scholar 

  • Underwood AJ (1975) Intertidal zonation of prosobranch gastropods: analysis of densities of four co-existing species. J Exp Mar Biol Ecol 19:197–216. doi:10.1016/0022-0981(75)90057-X

    Article  Google Scholar 

  • Villate F (1997) Tidal influence on zonation and occurrence of resident and temporary zooplankton in a shallow system. Sci Mar 61:173–188

    Google Scholar 

  • Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14:87–90. doi:10.1007/bf00303428

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012. doi:10.1073/pnas.96.14.8007

    Article  CAS  Google Scholar 

  • Zhukova NV (2007) Changes in the fatty acid composition of symbiotic dinoflagellates from the hermatypic coral Echinopora lamellosa during adaptation to the irradiance level. Russ J Plant Physiol 54:763–769. doi:10.1134/s1021443707060076

    Article  CAS  Google Scholar 

  • Zhukova NV, Titlyanov EA (2006) Effect of light intensity on the fatty acid composition of dinoflagellates symbiotic with hermatypic corals. Bot Mar 49:339–346. doi:10.1515/bot.2006.041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Commission 7th Framework Program Marie Curie Actions–People Grant PIRSES-GA-2011-295191 through the project SymbioCoRe (Synergies Through Merging Biological and Biogeochemical Expertise in Coral Research). RJMR was supported by a Postdoc scholarship (SFRH/BPD/99819/2014), financed by the Portuguese Foundation for Science and Technology (FCT). ICSC is supported by a PhD scholarship from Conselho Nacional de Pesquisa (CNPq) (No 556755/2010-3) and postdoctoral fellowship from Fundaçao de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (No. 2014/17815-0). RKPK is supported by the National Council for the Scientific and Technological Development (CNPq) fellowship (PQ-1C) and is a researcher of the National Institute of Science and Technology for the Tropical Marine Environment (INCT AmbTropic). RR is supported by the Investigator FCT program (IF/01373/2013). The authors thank the two anonymous reviewers for their insightful comments on a previous version of our work as well as to Melany Lopes for her review on grammatical issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui J. M. Rocha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: R. Hill.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, I.C., Rocha, R.J.M., Lopes, A. et al. Impact of air exposure on the photobiology and biochemical profile of an aggressive intertidal competitor, the zoanthid Palythoa caribaeorum . Mar Biol 163, 222 (2016). https://doi.org/10.1007/s00227-016-3002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3002-z

Keywords

Navigation