Skip to main content

Advertisement

Log in

Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral bleaching induces changes in lipid and fatty acid composition that result in low lipid content, reducing the likelihood of coral survival. Species-specific differences in the metabolism of lipid reserves may contribute to the differential resistance of corals under acute heat exposures. Here, we examined the dynamics of lipids and fatty acid abundance in corals subjected to short-term heat stress. The stony corals Acropora intermedia, Montipora digitata, and the soft coral Sinularia capitalis all showed a 60–75% decline in both storage and structural lipids. However, S. capitalis and M. digitata exhibited no significant change in the percentages of structural lipids (i.e., polar lipids and sterols) until they had lost 90–95% of their endosymbionts, whereas A. intermedia showed a rapid decline in structural lipids after a 50% loss of symbionts. After a 90–95% loss of symbionts under heat stress, all three corals showed a relative depletion of polyunsaturated fatty acids that had symbiont biomarkers, suggesting that polyunsaturated fatty acids were translocated from the symbiont to the coral host tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Al-Lihaibi SS, Al-Sofyani AA, Niaz GR (1998) Chemical composition of corals in Saudi Red sea coast. Oceanol Acta 21:495–501

    Article  CAS  Google Scholar 

  • Andersson BA (1978) Mass spectrometry of fatty acid pyrrolidides. Prog Chem Fats Other Lipids 16:279–308

    Article  PubMed  CAS  Google Scholar 

  • Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726

    Article  Google Scholar 

  • Anthony KRN, Hoogenboom M, Grottoli A, Middlebrook R, Maynard J (2009) An energetic approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol 23:539–550

    Article  Google Scholar 

  • Bachok Z, Mfilinge P, Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25:545–554

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Brown BE, Suharsono T (1990) Damage and recovery of coral reefs affected by El Nino related seawater warming in Thousand Islands, Indonesia. Coral Reefs 8:163–170

    Article  Google Scholar 

  • Carreau JP, Dubacq JP (1978) Adaptation of macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr A 151:384–390

    Article  CAS  Google Scholar 

  • Christie WW (1988) Equivalent chain lengths of methyl ester derivatives of fatty acids on gas chromatography–a reappraisal. J Chromatogr A 447:305–314

    CAS  Google Scholar 

  • Coles SL (1997) Reef coral occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs 16:269–272

    Article  Google Scholar 

  • Crag P, Birkeland C, Belliveau S (2001) High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20:185–189

    Article  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  • Diaz-Almeyda E, Thome PE, Hafidi ME, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30:217–225

    Article  Google Scholar 

  • Fitt WK, Spero HJ, Halas J, White MW, Porter JW (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean “Bleaching event”. Coral Reefs 12:57–64

    Article  Google Scholar 

  • Folch JF, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Grottoli AG, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Hamoutene D, Puestow T, Miller-Banoub J, Wareham V (2008) Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean). Coral Reefs 27:237–246

    Article  Google Scholar 

  • Harland AD, Davies PS, Fixter LM (1992) Lipid content of some Caribbean corals in relation to depth and light. Mar Biol 113:357–361

    Article  CAS  Google Scholar 

  • Harland AD, Navarro JC, Davies PS, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, was esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  • Harmelin JG (2004) Environnement thermique du benthos cotier de l’ile de Port-Cros (parc national, France, Mediterranee nord-occidentale) et implications biogeographiques. Sci Rep Port-Cros natl Park, Fr 20:173–194

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Imbs AB, Dautova TN (2008) Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria). Russian J Mar Biol 34:174–178

    Article  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Latypov YY, Pham LQ (2007) Application of fatty acids for chemotaxonomy of reef-building corals. Lipids 42:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Imbs AB, Demidkova DA, Dautova TN, Latyshev NA (2009) Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (Octocorallia). Lipids 44:325–335

    Article  PubMed  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Pham LQ (2010a) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci 76:375–380

    Article  CAS  Google Scholar 

  • Imbs AB, Latyshev NA, Dautova TN, Latypov YY (2010b) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409:65–75

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Latyshev NA, Pham LQ (2010c) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russian J Mar Biol 36:445–450

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schrieber U (1998) Temperature induced bleaching of corals begins with impairment of dark metabolism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: Porifera and Cnidaria. Prog Lipid Res 18:1–30

    Article  PubMed  CAS  Google Scholar 

  • Kellogg RB, Patton JS (1983) Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar Biol 75:137–149

    Article  CAS  Google Scholar 

  • Latypov YY (2005) Reef-building corals of Vietnam as part of the Indo-Pacific reef system. Russian J Mar Biol 31:34–40

    Article  Google Scholar 

  • Latyshev NA, Naumenko NV, Svetashev VI, Latypov YY (1991) Fatty acids of reef building corals. Mar Ecol Prog Ser 76:295–301

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  PubMed  CAS  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Marsh YA (1970) Primary productivity of reef-building calcareous and red algae. Ecology 55:225–263

    Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Cora Reefs 19:155–163

    Article  Google Scholar 

  • Middlebrook R, Anthony KRN, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K (2003a) Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish Sci 69:625–631

    Article  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003b) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Physiol Part B Biochem Mol Biol 135:533–537

    Article  CAS  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2007) Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Comp Biochem Physiol Part B Biochem Mol Biol 147:583–589

    Article  CAS  Google Scholar 

  • Patton JS, Abraham S, Benson AA (1977) Lipogenesis in the intact coral Pocillopora capicata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar Biol 44:235–247

    Article  CAS  Google Scholar 

  • Penin L, Adjeroud M, Schrimm M, Lenihan HS (2007) High spatial variability in coral bleaching around Moorea (French Polynesia): pattern across locations and water depths. Comptes Rendus Biologies 330:171–181

    Article  PubMed  Google Scholar 

  • Porter JW, Fitt WK, Spero HJ, Rogers CS, White MW (1989) Bleaching in reef corals: Physiological and stable isotopic responses. Proc Nat Acad Sci U S A 86:9342–9346

    Article  CAS  Google Scholar 

  • Ramalho JC, Campos PS, Teixeira M, Nunes MA (1998) Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Cofea arabica L. plants submitted to high irradiance. Plant Sci 135:115–124

    Article  CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2006) Lipids and chlorophyll in bleached and recovering Montipora capitata from Hawaii: An experimental approach. Proc 10th Int Coral Reef Symp: 696–701

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceangr 52:1874–1882

    Article  Google Scholar 

  • Rodrigues LJ, Grottoli AG, Pease TK (2008) Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J Exp Mar Biol Ecol 358:136–143

    Article  CAS  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Wada H (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277

    Article  PubMed  CAS  Google Scholar 

  • Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinians coral Pocillopora damicornis. Coral Reefs 14:87–90

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  PubMed  CAS  Google Scholar 

  • Yakovleva I, Hidaka M (2004) Differential recovery of PSII function and electron transport rate in symbiotic dinoflagellates as a possible determinant of bleaching susceptibility of corals. Mar Ecol Prog Ser 268:43–53

    Article  CAS  Google Scholar 

  • Yamashiro H, Oku H, Higa H, Chinen I, Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol Part B Biochem Mol Biol 122:397–407

    Article  Google Scholar 

  • Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation of Basic Research (09-04-01040, 09-04-90304, and 09-04-98542), the project “The study of biochemical resistance factors of the bleaching of Vietnamese Coral reefs” (NAFOSTED 2009-2011). The authors are grateful to the staff of Nhatrang Institute of Technology Research and Application VAST and the Open Russian-Vietnamese Laboratory of Biochemistry for use of facilities and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Additional information

Communicated by Environment Editor Prof. Rob van Woesik

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbs, A.B., Yakovleva, I.M. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31, 41–53 (2012). https://doi.org/10.1007/s00338-011-0817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0817-4

Keywords

Navigation