Skip to main content
Log in

Infrared Problem for the Nelson Model on Static Space-Times

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Nelson model on some static space-times and investigate the problem of existence of a ground state. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass m(x) tends to 0 at spatial infinity. We show that if m(x) ≥ C |x|−1 at infinity for some C > 0 then the Nelson Hamiltonian has a ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari Z.: Asymptotic completeness for a renormalized non-relativistic Hamiltonian in quantum field theory: the Nelson model. Math. Phys. Anal. Geom. 3, 217–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arai A., Hirokawa M., Hiroshima F.: On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff. J. Funct. Anal. 168, 470–497 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bach V., Fröhlich J., Sigal I.M.: Quantum electrodynamics of confined non-relativistic particles. Adv. Math. 137, 299–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bachelot A.: The Hawking effect. Ann. Inst. H. Poincaré Phys. Théor. 70, 41–99 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Betz V., Hiroshima F., Lörinczi J., Minlos R.A., Spohn H.: Ground state properties of the Nelson Hamiltonian – a Gibbs measure-based approach. Rev. Math. Phys. 14, 173–198 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruneau L., Dereziński J.: Pauli-Fierz Hamiltonians defined as quadratic forms. Rep. Math. Phys. 54, 169–199 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180, 633–652 (1996)

    Article  ADS  MATH  Google Scholar 

  8. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  9. de Bièvre S., Merkli M.: The Unruh effect revisited. Class. Quant. Grav. 23, 6525–6542 (2006)

    Article  MATH  Google Scholar 

  10. Derezinski, J., Gérard, C.: Scattering Theory of Classical and Quantum N. Particle Systems. Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer-Verlag, 1997

  11. Derezinski J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Derezinski J., Gérard C.: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Annales Henri Poincaré 5, 523–578 (2004)

    Article  ADS  MATH  Google Scholar 

  13. Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273–284 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Georgescu V., Gérard C., Moeller J.: Spectral theory of massless Nelson models. Commun. Math. Phys. 249, 29–78 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Gérard C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 1, 443–455 (2000)

    Article  MATH  Google Scholar 

  16. Gérard C., Hiroshima F., Panati A., Suzuki A.: Infrared Divergence of a Scalar Quantum Field Model on a Pseudo Riemannian Manifold. Interdisciplinary Information Sciences 15, 399–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gérard, C., Hiroshima, F., Panati, A., Suzuki, A.: Absence of ground state for the Nelson model on static space-times. http://arxiv.org/abs/1012.2655vI [math-ph], 2010

  18. Gérard, C., Hiroshima, F., Panati, A., Suzuki, A.: Removal of UV cutoff for the Nelson model on static space-times. In preparation

  19. Gérard C., Panati A.: Spectral and scattering theory for some abstract QFT Hamiltonians. Rev. Math. Phys. 21, 373–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griesemer M.: Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics. J. Funct. Anal. 210, 321–340 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griesemer M., Lieb E., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hirokawa M.: Infrared catastrophe for Nelson’s model, non-existence of ground state and soft-boson divergence. Publ. RIMS, Kyoto Univ. 42, 897–922 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lörinczi J., Minlos R.A., Spohn H.: The infrared behavior in Nelson’s model of a quantum particle coupled to a massless scalar field. Ann. Henri Poincaré 3, 1–28 (2002)

    Article  Google Scholar 

  25. Milman P.D., Semenov Y.A.: Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212, 373–398 (2004)

    Article  MathSciNet  Google Scholar 

  26. Nelson E.: Interaction of non-relativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1997 (1964)

    Article  ADS  Google Scholar 

  27. Panati A.: Existence and nonexistence of a ground state for the massless Nelson model under binding condition. Rep. Math. Phys. 63, 305–330 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Porper F.O., Eidel’man S.D.: Two sided estimates of fundamental solutions of second order parabolic equations and some applications. Russ. Math. Surv. 39, 119–178 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Radzikowski M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Radzikowski M.: A local-to-global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1–22 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I: Functional Analysis. New York: Academic Press, 1975

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-adjointness. New York: Academic Press, 1975

  33. Sanders K.: Equivalence of the (generalized) Hadamard and microlocal spectrum condition for (generalized) free fields in curved space-time. Commun. Math. Phys. 295, 485–501 (2010)

    Article  ADS  MATH  Google Scholar 

  34. Semenov Y.A.: Stability of l p−spectrum of generalized Schrödinger operators and equivalence of Green’s functions. IMRN 12, 573–593 (1997)

    Article  Google Scholar 

  35. Simon B.: Functional Integration and Quantum Physics. Academic Press, New York (1979)

    MATH  Google Scholar 

  36. Spohn H.: Ground state of a quantum particle coupled to a scalar boson field. Lett. Math. Phys. 44, 9–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Unruh W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  38. Unruh W.G, Wald R.: What happens when an accelerating observer detects a rindler particle. Phys. Rav. D 29, 1047–1056 (1984)

    Article  ADS  Google Scholar 

  39. Zhang Q.S.: Large time behavior of Schroedinger heat kernels and applications. Commun. Math. Phys. 210, 371–398 (2000)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gérard.

Additional information

Communicated by I.M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérard, C., Hiroshima, F., Panati, A. et al. Infrared Problem for the Nelson Model on Static Space-Times. Commun. Math. Phys. 308, 543–566 (2011). https://doi.org/10.1007/s00220-011-1289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1289-7

Keywords

Navigation