Skip to main content
Log in

A local-to-global singularity theorem for quantum field theory on curved space-time

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that if a reference two-point distribution of positive type on a time orientable curved space-time (CST) satisfies a certain condition on its wave front set (the “classP M,g condition”) and if any other two-point distribution (i) is of positive type, (ii) has the same antisymmetric part as the reference modulo smooth function and (iii) has the same local singularity structure, then it has the same global singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-differential operator the support of whose symbol is restricted to a certain conic region which depends on the wave front set of the reference state. This local-to-global theorem, together with results published elsewhere, leads to a verification of a conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a globally hyperbolic CST, the local Hadamard condition implies the global Hadamard condition. A counterexample to the local-to-global theorem on a strip in Minkowski space is given when the classP M,g condition is not assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, B.: Vacuum states in de Sitter space. Phys. Rev. D32, 3136–3149 (1985)

    Article  Google Scholar 

  2. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, Cambridge: Cambridge University Press, 1982

    Google Scholar 

  3. Borchers, H.J.: On the structure of the algebra of field operators. Nuovo Cimento24, 214–236 (1962)

    Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, Vols. 1,2. Berlin, Heidelberg, New York: Springer 1979, 1981

    Google Scholar 

  5. DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys. (N.Y.)9, 220–259 (1960)

    Article  Google Scholar 

  6. Dimock, J.: Scalar quantum field in an external gravitational background. J. Math. Phys.20, 2549–2555 (1979)

    Article  Google Scholar 

  7. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys.77, 219–228 (1980)

    Article  Google Scholar 

  8. Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Mathematica128, 183–269 (1972)

    Google Scholar 

  9. Fredenhagen, K.: On the general theory of quantized fields. In: Schmüdgen, K. (ed.): Mathematical Physics X. Berlin, Heidelberg: Springer-Verlag, 1992, pp. 136–152

    Google Scholar 

  10. Fredenhagen, K., Haag, R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys.108, 91–115 (1987)

    Article  Google Scholar 

  11. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  12. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. (N.Y.)136, 243–272 (1981)

    Article  Google Scholar 

  13. Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys.63, 257–264 (1978)

    Article  Google Scholar 

  14. Gonnella, G., Kay, B.S.: Can locally Hadamard quantum states have non-local singularities? Class. Quantum Gravity6, 1445–1454 (1989)

    Article  Google Scholar 

  15. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964)

    Article  Google Scholar 

  16. Haag, R., Narnhofer, H., Stein, U.: On quantum field theory on gravitational background. Commun. Math. Phys.94, 219–238 (1984)

    Article  Google Scholar 

  17. Haag, R.: Local Quantum Physics. Berlin, Heidelberg: Springer-Verlag, 1992

    Google Scholar 

  18. Hadamard, J.: Lectures on Cauchy's Problem in Linear Differential Equations. New York: Dover, 1952

    Google Scholar 

  19. Hawking, S.E., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press, 1973

    Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin, Heidelberg, New York: Springer, 1985

    Google Scholar 

  21. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, Second Edition. Berlin, Heidelberg, New York: Springer, 1990

    Google Scholar 

  22. Kay, B.S.: Talk (see Workshop Chairman's Report by A. Ashtekar, pp. 453–456). In: Bertotti, B., de Felice, F., Pascolini, A. (eds.): Proc. 10th International Conference on General Relativity and Gravitation (Padova, 1983). Dordrecht: Riedel, 1984

    Google Scholar 

  23. Kay, B.S.: Quantum field theory on curved space-time In: Bleuler, K., Werner, M. (eds.): Differential Geometrical Methods in Theoretical Physics. Dordrecht: Kluwer Academic Publishers, 1988, pp. 373–393

    Google Scholar 

  24. Kay, B.S.: Quantum field theory on curved space-time. In: Schmüdgen, K. (ed.): Mathematical Physics X. Berlin, Heidelberg: Springer-Verlag, 1992, pp. 383–387

    Google Scholar 

  25. Kay, B.S.: The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys., Special Issue, 167–195 (1992)

  26. Kay, B.S.: Sufficient conditions for quasifree states and an improved uniqueness theorem for quantum fields on space-times with horizons. J. Math. Phys.34(10), 4519–4539 (1993)

    Article  Google Scholar 

  27. Kay, B.S.: Private communication, dated April 1995

  28. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep.207 (2), 49–136 (1991)

    Article  Google Scholar 

  29. Köhler, M.: New examples for Wightman fields on a manifold. Class. Quant. Grav.12, 1413–1427 (1995)

    Article  Google Scholar 

  30. Köhler, M.: The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime. Doctoral dissertation, University of Hamburg, 1995

  31. Leray, J.: Hyperbolic Differential Equations. Princeton, N.J.: Lecture notes, Institute for Advanced Study, 1963

  32. Lichnerowicz, A.: Propagateurs et commutateurs en relativité générale. Publ. Math. de l'Inst. des Hautes Etudes, Paris10, (1961)

  33. Lichnerowicz, A.: Propagateurs, commutateurs et anticommutateurs en relativité générale. In: DeWitt, C., DeWitt, B. (eds.): Relativity, Groups and Topology. New York: Gordon and Breach, 1964, pp. 821–861

    Google Scholar 

  34. Lüders, C., Roberts, J.E.: Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys.134, 29–63 (1990)

    Google Scholar 

  35. Moreno, C.: Spaces of positive and negative frequency solutions of field equations in curved spacetimes. I. The Klein-Gordon equation in stationary space-times, II. The massive vector field equations in static space-times. J. Math. Phys.18, 2153–2161 (1977), J. Math. Phys.19, 92–99 (1978)

    Article  Google Scholar 

  36. Najmi, A.H., Ottewill, A.C.: Quantum states and the Hadamard form III: Constraints in cosmological spacetimes. Phys. Rev. D32, 1942–1948 (1985)

    Article  Google Scholar 

  37. Radzikowski, M.J.: The Hadamard condition and Kay's conjecture in (axiomatic) quantum field theory on curved space-time. Ph.D. dissertation, Princeton University, 1992. Available through University Microfilms International, 300 N. Zeeb Road, Ann. Arbor, Michigan 48106 USA

  38. Radzikowski, M.J.: Microlocal approach to the Hadamard condition in quantum field theory on curved space-time. To appear in Commun. Math. Phys.

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I: Functional Analysis. New York, NY: Academic Press, 1980

    Google Scholar 

  40. Streater, R.F., Wightman A.S.: PCT, Spin and Statistics, and All That. Reading, Massachusetts: Benjamin/Cummings, 1964

    Google Scholar 

  41. Taylor, M.E.: Pseudodifferential Operators. Princeton, NJ: Princeton University Press, 1981

    Google Scholar 

  42. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys.160, 507–536 (1994)

    Google Scholar 

  43. Wald, R.M.: The back reaction effect in particle creation in curved spacetime. Commun. Math. Phys.54, 1–19 (1977)

    Article  Google Scholar 

  44. Wald, R.M.: On the trace anomaly of a conformally invariant quantum field on curved spacetime. Phys. Rev. D17, 1477–1484 (1978)

    Article  Google Scholar 

  45. Wald, R.M.: General Relativity. Chicago, IL: The University of Chicago Press, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Felder

To a special friend, who saved my life when I was younger, without whom I could not have written this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzikowski, M.J., Verch, R. A local-to-global singularity theorem for quantum field theory on curved space-time. Commun.Math. Phys. 180, 1–22 (1996). https://doi.org/10.1007/BF02101180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101180

Keywords

Navigation