Skip to main content
Log in

An Infinite Class of Extremal Horizons in Higher Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new class of near-horizon geometries which solve Einstein’s vacuum equations, including a negative cosmological constant, in all even dimensions greater than four. Spatial sections of the horizon are inhomogeneous S 2-bundles over any compact Kähler-Einstein manifold. For a given base, the solutions are parameterised by one continuous parameter (the angular momentum) and an integer which determines the topology of the horizon. In six dimensions the horizon topology is either S 2 × S 2 or \({\mathbb{CP}^2\# \overline{\mathbb{CP}^2}}\). In higher dimensions the S 2-bundles are always non-trivial, and for a fixed base, give an infinite number of distinct horizon topologies. Furthermore, depending on the choice of base we can get examples of near-horizon geometries with a single rotational symmetry (the minimal dimension for this is eight). All of our horizon geometries are consistent with all known topology and symmetry constraints for the horizons of asymptotically flat or globally Anti de Sitter extremal black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  2. Chrusciel P.T., Wald R.M.: On The Topology Of Stationary Black Holes. Class. Quant. Grav. 11, L147 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  3. Emparan R., Reall H.S.: Black Holes in Higher Dimensions. Living Rev. Rel. 11, 6 (2008)

    Google Scholar 

  4. Galloway G.J., Schoen R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Myers R.C., Perry M.J.: Black Holes In Higher Dimensional Space-Times. Annal. Phys. 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Emparan R., Reall H.S.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Pomeransky, A.A., Sen’kov, R. A.: Black ring with two angular momenta. http://arxiv.org/abs/hep-th/0612005v1, 2006

  8. Reall, H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003) [Erratum-ibid. D 70, 089902 (2004)]

    Google Scholar 

  9. Milnor J.W., Stasheff J.D.: Characteristic classes. Princeton University Press, Princeton, NJ (1974)

    MATH  Google Scholar 

  10. Wall C.T.C.: Determination of the cobordism ring. Ann. Math. Second Series 72, 292–311 (1960)

    Article  MATH  Google Scholar 

  11. Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological Censorship and Higher Genus Black Holes. Phys. Rev. D 60, 104039 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  12. Milnor, J.: A Procedure for killing homotopy groups of differentiable manifolds. Proc. Sympos. Pure Math. Vol. III Providence, RI: Amer. Math. Soc., 1961, pp. 39–55

  13. Chrusciel P.T., Reall H.S., Tod P.: On non-existence of static vacuum black holes with degenerate components of the event horizon. Class. Quant. Grav. 23, 549 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kunduri H.K., Lucietti J., Reall H.S.: Near-horizon symmetries of extremal black holes. Class. Quant. Grav. 24, 4169 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Besse, A.L.: Einstein Manifolds. Berlin-Heidelberg-New York: Springer-Verlag, 2nd edition, 1987

  16. Page D.N.: A Compact Rotating Gravitational Instanton. Phys. Lett. B 79, 235 (1978)

    Article  ADS  Google Scholar 

  17. Gibbons G.W., Ida D., Shiromizu T.: Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66, 044010 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. Page D.N., Pope C.N.: Inhomogeneous Einstein Metrics On Complex Line Bundles. Class. Quant. Grav. 4, 213 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Hollands S., Ishibashi A., Wald R.M.: A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric. Commun. Math. Phys. 271, 699 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Moncrief V., Isenberg J.: Symmetries of Higher Dimensional Black Holes. Class. Quant. Grav. 25, 195015 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hajicek P.: Three remarks on axisymmetric stationary horizons. Commun.Math. Phys. 36, 305–320 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lewandowski J., Pawlowski T.: Extremal Isolated Horizons: A Local Uniqueness Theorem. Class. Quant. Grav. 20, 587 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kunduri H.K., Lucietti J.: A classification of near-horizon geometries of extremal vacuum black holes. J. Math. Phys. 50, 082502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kunduri H.K., Lucietti J.: Uniqueness of near-horizon geometries of rotating extremal AdS(4) black holes. Class. Quant. Grav. 26, 055019 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Amsel A.J., Horowitz G.T., Marolf D., Roberts M.M.: Uniqueness of Extremal Kerr and Kerr-Newman Black Holes. Phys. Rev. D 81, 024033 (2010)

    Article  ADS  Google Scholar 

  26. Figueras P., Lucietti J.: On the uniqueness of extremal vacuum black holes. Class. Quant. Grav. 27, 095001 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chrusciel, P.T., Nguyen, L.: A uniqueness theorem for degenerate Kerr-Newman black holes. http://arciv.org/abs/1002.1737v1 [gr-qc], (2010)

  28. Hollands S., Ishibashi A.: All vacuum near horizon geometries in D-dimensions with (D−3) Commuting Rotational Symmetries. Ann. H. Poincaré 10, 1537–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Figueras P., Kunduri H.K., Lucietti J., Rangamani M.: Extremal vacuum black holes in higher dimensions. Phys. Rev. D 78, 044042 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  30. Mann R.B., Stelea C.: New multiply nutty spacetimes. Phys. Lett. B 634, 448 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Houri T., Oota T., Yasui Y.: Generalized Kerr-NUT-de Sitter metrics in all dimensions. Phys. Lett. B 666, 391 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. Nash J.: Positive Ricci Curvature on Fibre Bundles. J. Diff. Geom. 14, 241–254 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Stenrod N.: The topology of fibre bundles. Princeton University Press, Princeton, NJ (1951)

    Google Scholar 

  34. Gauntlett J.P., Martelli D., Sparks J., Waldram D.: Sasaki-Einstein metrics on S(2) x S(3). Adv. Theor. Math. Phys. 8, 711 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Tian G.: On Calabis conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Doran C., Headrick M., Herzog C.P., Kantor J., Wiseman T.: Numerical Kaehler-Einstein metric on the third del Pezzo. Commun. Math. Phys. 282, 357 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Hollands S., Ishibashi A.: On the ‘Stationary Implies Axisymmetric’ Theorem for Extremal Black Holes in Higher Dimensions. Commun. Math. Phys. 291, 403 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. Emparan, R., Harmark, T., Niarchos, V., Obers, N.A.: New Horizons for Black Holes and Branes. http://arxiv.org/abs/0912.2352v3 [hep-th], 2010

  39. Dias O.J.C., Figueras P., Monteiro R., Reall H.S., Santos J.E.: An instability of higher-dimensional rotating black holes. JHEP 1005, 076 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  40. Kunduri H.K., Lucietti J., Reall H.S.: Gravitational perturbations of higher dimensional rotating black holes: Tensor Perturbations. Phys. Rev. D 74, 084021 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  41. Kunduri H.K., Lucietti J., Reall H.S.: Do supersymmetric anti-de Sitter black rings exist?. JHEP 0702, 026 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. Kunduri H.K., Lucietti J.: Near-horizon geometries of supersymmetric AdS(5) black holes. JHEP 0712, 015 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. Caldarelli M.M., Emparan R., Rodriguez M.J.: Black Rings in (Anti)-deSitter space. JHEP 0811, 011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  44. Chong Z.W., Cvetic M., Lu H., Pope C.N.: General non-extremal rotating black holes in minimal five-dimensional gauged supergravity. Phys. Rev. Lett. 95, 161301 (2005)

    Article  ADS  Google Scholar 

  45. Kunduri H.K., Lucietti J., Reall H.S.: Supersymmetric multi-charge AdS(5) black holes. JHEP 0604, 036 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  46. Gauntlett J.P., Martelli D., Sparks J.F., Waldram D.: A new infinite class of Sasaki-Einstein manifolds. Adv. Theor. Math. Phys. 8, 987 (2006)

    MathSciNet  Google Scholar 

  47. Bott R., Tu L.: Differential Forms in Algebraic Topology. Springer-Verlag, Berlin-Heidelberg-New York (1982)

    MATH  Google Scholar 

  48. Kobayashi S.: On Compact Kähler Manifolds with Positive Definite Ricci tensor. Ann. Math. Second Series 74, 570–574 (1961)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Lucietti.

Additional information

Communicated by P.T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunduri, H.K., Lucietti, J. An Infinite Class of Extremal Horizons in Higher Dimensions. Commun. Math. Phys. 303, 31–71 (2011). https://doi.org/10.1007/s00220-011-1192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1192-2

Keywords

Navigation