Skip to main content
Log in

Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidases (DPP) are a group of enzymes capable to liberate dipeptides from the N-terminal side of longer peptides. Four different DPP activities have been described in skeletal muscle, each one of them having different biochemical characteristics. The four enzymes have proved to remain active during meat ageing and during processing of cured meat products. So, the fact that dipeptides are present at the end of the curing process could be related to the action of DPP during this period. In the present work we investigated DPP action on the hydrolysis of oligopeptides and its ability to generate dipeptides with antihypertensive properties by studying its inhibitory effect on angiotensin-I converting enzyme. Among the assayed dipeptides, Val-Tyr showed the strongest ACE inhibitory activity with an IC50 value of 4.6 μM under our assay conditions. In a lower degree, Arg-Ser also proved to be a strong ACE inhibitor. The effect of Arg-Phe, Gly-Phe, Met-Ala and Val-Gly was lower though still remarkable. The present results stress forward the importance of DPP in the generation of antihypertensive peptides during the processing of meat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sentandreu MA, Coulis G, Ouali A (2002) Trends Food Sci Technol 13:400–421

    Article  CAS  Google Scholar 

  2. Toldrá F, (2002) Dry cured meat products. Food and Nutrition Press, Trumbull, CT

    Google Scholar 

  3. Sentandreu MA, Toldra F (1998) J Agric Food Chem 46:3977–3984

    Article  CAS  Google Scholar 

  4. Sentandreu MA, Toldra F (2000) J Agric Food Chem 48:5014–5022

    Article  CAS  Google Scholar 

  5. Sentandreu MA, Toldra F (2001) Food Chem 75:159–168

    Article  Google Scholar 

  6. Sentandreu MA, Toldra F (2001) Meat Sci 57:93–103

    Article  CAS  Google Scholar 

  7. Sentandreu MA, Stoeva S, Aristoy MC, Laib K, Voelter W, Toldra F (2003) J Food Sci 68:64–69

    Article  CAS  Google Scholar 

  8. Sforza S, Pigazzani A, Motti M, Porta C, Virgili R, Galaverna G, Dossena A, Marchelli R (2001) Food Chem 75:267–273

    Article  CAS  Google Scholar 

  9. Sforza S, Boni M, Ruozi R, Virgili R, Marchelli R (2003) Meat Sci 63:57–61

    Article  Google Scholar 

  10. Yamamoto N, Ejiri M, Mizuno S (2003) Curr Pharm Des 9:1345–1355

    Article  CAS  Google Scholar 

  11. FitzGerald RJ, Meisel H (2000) Br J Nutr 84(Suppl 1):S33–S37

    CAS  Google Scholar 

  12. Ichimura T, Hu J, Aita DQ, Maruyama S (2003) J Biosci Bioeng 96:496–499

    CAS  Google Scholar 

  13. Lo WM, Li-Chan EC (2005) J Agric Food Chem 53:3369–3376

    Article  CAS  Google Scholar 

  14. Suetsuna K (1998) J Nutr Biochem 9:415–419

    Article  CAS  Google Scholar 

  15. Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Biosci Biotechnol Biochem 58:2244–2245

    CAS  Google Scholar 

  16. Yokoyama K, Chiba H, Yoshikawa M (1992) Biosci Biotechnol Biochem 56:1541–1545

    CAS  Google Scholar 

  17. Nakashima Y, Arihara K, Sasaki A, Mio H, Ishikawa S, Itoh M (2002) J Food Sci 67:434–437

    Article  CAS  Google Scholar 

  18. Saiga A, Okumura T, Makihara T, Katsuta S, Shimizu T, Yamada R, Nishimura T (2003) J Agric Food Chem 51:1741–1745

    Article  CAS  Google Scholar 

  19. Houston MC (2002) JANA supplement no. I:1–71

    Google Scholar 

  20. Sentandreu MA, Toldrá F (2006) Food Chem 97:546–554

    Article  CAS  Google Scholar 

  21. Sentandreu MA, Toldrá F (2006) Food Chem (in press)

  22. Smyth M, O’Cuinn G (1994) J Neurochem 63:1439–1445

    Article  CAS  Google Scholar 

  23. Chen JM, Barrett AJ (2004) In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier Academic Press, London, pp 809–812

  24. McDonald JK, Ohkubo I (2004) In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier Academic Press, London, pp 1938–1943

  25. Sentandreu MA, Toldra F (2001) Eur Food Res Technol 213:83–87

    Article  CAS  Google Scholar 

  26. Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW (1980) J Biol Chem 255:401–407

    CAS  Google Scholar 

  27. Saito Y, Wanezaki K, Kawato A, Imayasu S (1994) Biosci Biotechnol Biochem 58:1767–1771

    Article  CAS  Google Scholar 

  28. Cushman DW, Cheung HS (1971) Biochem Pharmacol 20:1637–1648

    Article  CAS  Google Scholar 

  29. Fuglsang A, Nilsson D, Nyborg NC (2003) J Enzyme Inhib Med Chem 18:407–412

    Article  CAS  Google Scholar 

  30. Murray BA, Walsh DJ, FitzGerald RJ (2004) J Biochem Biophys Meth 59:127–137

    Article  CAS  Google Scholar 

  31. Seki E, Osajima K, Matsufuji H, Matsui T, Osajima Y (1995) Nippon Nogeikagaku Kaishi-J Jpn Soc Biosci Biotechnol Agrochem 69:1013–1020

    CAS  Google Scholar 

  32. Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) J Agric Food Chem 50:6245–6252

    Article  CAS  Google Scholar 

  33. Suetsuna K, Maekawa K, Chen JR (2004) J Nutr Biochem 15:267–272

    Article  CAS  Google Scholar 

  34. Matsui T, Tamaya K, Seki E, Osajima K, Matsumoto K, Kawasaki T (2002) Clin Exp Pharmacol Physiol 29:204–208

    Article  CAS  Google Scholar 

  35. Turk B, Turk D, Dolenc I (2004) In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier Academic Press, London, pp 1192–1196

  36. Zhao GM, Zhou GH, Xu XL, Peng ZQ, Huan YJ, Jing ZM, Chen MW (2005) Meat Sci 69:165–174

    Article  CAS  Google Scholar 

  37. Vermeirssen V, Van Camp J, Verstraete W (2004) Br J Nutr 92:357–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific advise of Dr. Ouali (INRA, France) in the preparation of the manuscript is fully acknowledged. This work was supported by a Marie Curie ERG grant (MERG-CT-2004-510652) from European Commission (MA Sentandreu). An I3P contract (European Social Fund) to MA Sentandreu is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Sentandreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sentandreu, M.Á., Toldrá, F. Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. Eur Food Res Technol 224, 785–790 (2007). https://doi.org/10.1007/s00217-006-0367-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0367-0

Keywords

Navigation