Skip to main content
Log in

Trace analysis of environmental matrices by large-volume injection and liquid chromatography–mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The time-honored convention of concentrating aqueous samples by solid-phase extraction (SPE) is being challenged by the increasingly widespread use of large-volume injection (LVI) liquid chromatography–mass spectrometry (LC–MS) for the determination of traces of polar organic contaminants in environmental samples. Although different LVI approaches have been proposed over the last 40 years, the simplest and most popular way of performing LVI is known as single-column LVI (SC-LVI), in which a large-volume of an aqueous sample is directly injected into an analytical column. For the purposes of this critical review, LVI is defined as an injected sample volume that is ≥10% of the void volume of the analytical column. Compared with other techniques, SC-LVI is easier to set up, because it requires only small hardware modifications to existing autosamplers and, thus, it will be the main focus of this review. Although not new, SC-LVI is gaining acceptance and the approach is emerging as a technique that will render SPE nearly obsolete for many environmental applications. In this review, we discuss: the history and development of various forms of LVI; the critical factors that must be considered when creating and optimizing SC-LVI methods; and typical applications that demonstrate the range of environmental matrices to which LVI is applicable, for example drinking water, groundwater, and surface water including seawater and wastewater. Furthermore, we indicate direction and areas that must be addressed to fully delineate the limits of SC-LVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CC-LVI:

Coupled-column large-volume injection

LVI:

Large-volume injection

LOD:

Limit of detection

LOQ:

Limit of quantification

LC–MS–MS:

Liquid chromatography-tandem mass spectrometry

MS:

Mass spectrometry

ON-E:

On-line enrichment

SC-LVI:

Single-column large-volume injection

SPE:

Solid-phase extraction

UV–Vis:

Ultraviolet–visible absorption

References

  1. Jonkers N, Sousa A, Galante-Oliveira S, Barroso CM, Kohler HPE, Giger W (2010) Environ Sci Pollut Res 17:834–843

    Article  CAS  Google Scholar 

  2. Alumbaugh RE, Gieg LM, Field JA (2004) J Chromatogr A 1042:89–97

    Article  CAS  Google Scholar 

  3. Busetti F, Heitz A, Cuomo M, Badoer S, Traverso P (2006) J Chromatogr A 1102:104–115

    Article  CAS  Google Scholar 

  4. Altenbach B, Giger W (1995) Anal Chem 67:2325–2333

    Article  CAS  Google Scholar 

  5. Field JA, Monohan K (1995) Anal Chem 67:3357–3362

    Article  CAS  Google Scholar 

  6. Martin JW, Kannan K, Berger U, de Voogt P, Field J, Franklin J, Giesy JP, Harner T, Muir DC, Scott B, Kaiser M, Jarnberg U, Jones KC, Mabury SA, Schroeder H, Simcik M, Sottani C, van Bavel B, Karrman A, Lindstrom G, van Leeuwen S (2004) Environ Sci Technol 38:248A–255A

    Article  CAS  Google Scholar 

  7. Little JN, Fallick GJ (1975) J Chromatogr 112:389–397

    Article  CAS  Google Scholar 

  8. Gloor R, Johnson EL (1977) J Chromatogr Sci 15:413–423

    CAS  Google Scholar 

  9. Kiso Y, Li H, Shigetoh K, Kitao T, Jinno K (1996) J Chromatogr A 733:259–265

    Article  CAS  Google Scholar 

  10. Hogendoorn EA, Dejong A, Vanzoonen P, Brinkman UAT (1990) J Chromatogr 511:243–256

    Article  CAS  Google Scholar 

  11. Hogendoorn EA, Verschraagen C, Brinkman UAT, van Zoonen P (1992) Anal Chim Acta 268:205–215

    Article  CAS  Google Scholar 

  12. Hogendoorn EA, Vanzoonen P (1992) Fresenius J Anal Chem 343:73–74

    Article  Google Scholar 

  13. Hogendoorn EA, Brinkman UAT, van Zoonen P (1993) J Chromatogr A 644:307–314

    Article  CAS  Google Scholar 

  14. Hogendoorn EA, Hoogerbrugge R, Baumann RA, Meiring HD, de Jong A, van Zoonen P (1996) J Chromatogr A 754:49–60

    Article  CAS  Google Scholar 

  15. Hidalgo C, Sancho JV, Hernandez F (1997) Anal Chim Acta 338:223–229

    Article  CAS  Google Scholar 

  16. Sancho JV, Hidalgo C, Hernandez F (1997) J Chromatogr A 761:322–326

    Article  CAS  Google Scholar 

  17. Hernandez F, Hidalgo C, Sancho JV, Lopez FJ (1998) Anal Chem 70:3322–3328

    Article  CAS  Google Scholar 

  18. Rezai MA, Famiglini G, Cappiello A (1996) J Chromatogr A 742:69–78

    Article  CAS  Google Scholar 

  19. Cappiello A, Famiglini G, Berloni A (1997) J Chromatogr A 768:215–222

    Article  CAS  Google Scholar 

  20. Hogenboom AC, Hofman MP, Kok SJ, Niessen WMA, Brinkman UAT (2000) J Chromatogr A 892:379–390

    Article  CAS  Google Scholar 

  21. van der Heeft E, Dijkman E, Baumann RA, Hogendoorn EA (2000) J Chromatogr A 879:39–50

    Article  Google Scholar 

  22. Dijkman E, Mooibroek D, Hoogerbrugge R, Hogendoorn E, Sancho JV, Pozo O, Hernandez F (2001) J Chromatogr A 926:113–125

    Article  CAS  Google Scholar 

  23. Ingelse BA, van Dam RCJ, Vreeken RJ, Mol HGJ, Steijger OM (2001) J Chromatogr A 918:67–78

    Article  CAS  Google Scholar 

  24. Huang SB, Mayer TJ, Yokley RA, Perez R (2006) J Agric Food Chem 54:713–719

    Article  CAS  Google Scholar 

  25. Seitz W, Schulz W, Weber WH (2006) Rapid Commun Mass Spectrom 20:2281–2285

    Article  CAS  Google Scholar 

  26. Diaz L, Llorca-Porcel J, Valor I (2008) Anal Chim Acta 624:90–96

    Article  CAS  Google Scholar 

  27. Greulich K, Alder L (2008) Anal Bioanal Chem 391:183–197

    Article  CAS  Google Scholar 

  28. Smith GA, Pepich BV, Munch DJ (2008) J Chromatogr A 1202:138–144

    Article  CAS  Google Scholar 

  29. Kowal S, Balsaa P, Werres F, Schmidt TC (2009) Anal Bioanal Chem 395:1787–1794

    Article  CAS  Google Scholar 

  30. Rosales-Conrado N, Leon-Gonzalez ME, Perez-Arribas LV, Polo-Diez LM (2002) Anal Chim Acta 470:147–154

    Article  CAS  Google Scholar 

  31. Chalanyova M, Paulechova M, Hutta M (2006) J Sep Sci 29:2149–2157

    Article  CAS  Google Scholar 

  32. Rybar I, Gora R, Hutta M (2007) J Sep Sci 30:3164–3173

    Article  CAS  Google Scholar 

  33. Bachema Analytical Laboratories Schlieren Switzerland (2011) <http://www.bachema.ch/analyse-methoden/wasser/einzelanalysen>/ Accessed 21 July 2011

  34. Schultz MM, Barofsky DF, Field JA (2004) Environ Sci Technol 38:1828–1835

    Article  CAS  Google Scholar 

  35. Schultz MM, Barofsky DF, Field JA (2006) Environ Sci Technol 40:289–295

    Article  CAS  Google Scholar 

  36. Huset CA, Chiaia AC, Barofsky DF, Jonkers N, Kohler HPE, Ort C, Giger W, Field JA (2008) Environ Sci Technol 42:6369–6377

    Article  CAS  Google Scholar 

  37. Furdui VI, Crozier PW, Reiner EJ, Mabury SA (2008) Chemosphere 73:S24–S30

    Article  CAS  Google Scholar 

  38. Cavalli S, Polesello S, Saccani G (2004) J Chromatogr A 1039:155–159

    Article  CAS  Google Scholar 

  39. Marin JM, Pozo OJ, Sancho JV, Pitarch E, Lopez FJ, Hernandez F (2006) J Mass Spectrom 41:1041–1048

    Article  CAS  Google Scholar 

  40. Pitarch E, Hernandez F, ten Hove J, Meiring H, Niesing W, Dijkman E, Stolker L, Hogendoorn E (2004) J Chromatogr A 1031:1–9

    Article  CAS  Google Scholar 

  41. Chiaia AC, Banta-Green C, Field J (2008) Environ Sci Technol 42:8841–8848

    Article  CAS  Google Scholar 

  42. Thompson TS, Noot DK, Forrest F, van der Heever JP, Kendall J, Keenliside J (2009) Anal Chim Acta 633:127–135

    Article  CAS  Google Scholar 

  43. Berset JD, Brenneisen R, Mathieu C (2010) Chemosphere 81:859–866

    Article  CAS  Google Scholar 

  44. Bisceglia KJ, Roberts AL, Schantz MM, Lippa KA (2010) Anal Bioanal Chem 398:2701–2712

    Article  CAS  Google Scholar 

  45. Weiss S, Reemtsma T (2005) Anal Chem 77:7415–7420

    Article  CAS  Google Scholar 

  46. Quintana JB, Reemtsma T (2007) J Chromatogr A 1145:110–117

    Article  CAS  Google Scholar 

  47. Busetti F, Linge KL, Blythe JW, Heitz A (2008) J Chromatogr A 1213:200–208

    Article  CAS  Google Scholar 

  48. Busetti F, Linge KL, Rodriguez C, Heitz A (2010) J Environ Sci Health A 45:542–548

    Article  CAS  Google Scholar 

  49. Patterson BM, Shackleton M, Furness AJ, Pearce J, Descourvieres C, Linge KL, Busetti F, Spadek T (2010) Water Res 44:1471–1481

    Article  CAS  Google Scholar 

  50. Curtin Water Quality Research Centre Perth Australia (2010) http://cwqrc.curtin.edu.au/ Accessed 21 July 2011

  51. Speksnijder P, van Ravestijn J, de Voogt P (2010) J Chromatogr A 1217:5184–5189

    Article  CAS  Google Scholar 

  52. Backe W, Ort C, Brewer A, Field J (2011) Anal Chem 83:2622–2630

    Article  CAS  Google Scholar 

  53. Poole CF, Gunatilleka AD, Sethuraman R (2000) J Chromatogr A 885:17–39

    Article  CAS  Google Scholar 

  54. Gelencser A, Kiss G, Krivacsy Z, Vargapuchony Z, Hlavay J (1995) J Chromatogr A 693:217–225

    Article  CAS  Google Scholar 

  55. Gelencser A, Kiss G, Krivacsy Z, Vargapuchony Z, Hlavay J (1995) J Chromatogr A 693:227–233

    Article  CAS  Google Scholar 

  56. Thurman E, Mills M (1998) Solid phase extraction principles and practice. Wiley, New York, p 344

    Google Scholar 

  57. Snyder L, Kirkland J, Dolan J (2010) Introduction to modern liquid chromatography. Wiley, Hoboken, NJ, p 912

    Google Scholar 

  58. Majors RE, Carr PW (2008) LC GC North America 26:118

    Google Scholar 

  59. Jessome LL, Volmer DA (2006) LC GC North America 24:498

    CAS  Google Scholar 

  60. Chassaing C, Luckwell J, Macrae P, Saunders K, Wright P, Venn R (2001) Chromatographia 53:122–130

    Article  CAS  Google Scholar 

  61. Powley CR, George SW, Ryan TW, Buck RC (2005) Anal Chem 77:6353–6358

    Article  CAS  Google Scholar 

  62. Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T (2004) Environ Sci Technol 38:5522–5528

    Article  CAS  Google Scholar 

  63. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005) Mar Pollut Bull 51:658–668

    Article  CAS  Google Scholar 

  64. Williams S (2004) J Chromatogr A 1052:1–11

    Article  CAS  Google Scholar 

  65. Bakalyar SR, Phipps C, Spruce B, Olsen K (1997) J Chromatogr A 762:167–185

    Article  CAS  Google Scholar 

  66. Kozlowski ES, Dalterlo RA (2007) J Sep Sci 30:2286–2292

    Article  CAS  Google Scholar 

  67. Layne J, Farcas T, Rustamov I, Ahmed F (2001) J Chromatogr A 913:233–242

    Article  CAS  Google Scholar 

  68. Mills MJ, Maltas J, Lough WJ (1997) J Chromatogr A 759:1–11

    Article  CAS  Google Scholar 

  69. Leon-Gonzalez ME, Rosales-Conrado N, Perez-Arribas LV, Polo-Diez LM (2010) J Chromatogr A 1217:7507–7513

    Article  CAS  Google Scholar 

  70. Snyder L, Dolan J (2007) High performance gradient elution: the practical application of the linear solvent strength model. Wiley, Hoboken, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Field.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busetti, F., Backe, W.J., Bendixen, N. et al. Trace analysis of environmental matrices by large-volume injection and liquid chromatography–mass spectrometry. Anal Bioanal Chem 402, 175–186 (2012). https://doi.org/10.1007/s00216-011-5290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5290-y

Keywords

Navigation