Skip to main content
Log in

Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1–28 ng/L (surface water) and 0.1–32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1–143 ng/L or 0.33–476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction–liquid chromatography–mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Richardson SD. Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem. 2012;84:747–78. doi:10.1021/ac202903d.

    Article  CAS  Google Scholar 

  2. Richardson SD, Ternes TA. Water analysis: emerging contaminants and current issues. Anal Chem. 2014;86:2813–48. doi:10.1021/ac500508t.

    Article  CAS  Google Scholar 

  3. Whitehouse C, Dreyer R. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 1985;57:675–9.

    Article  CAS  Google Scholar 

  4. Petrovic M, Farré M, Eljarrat E, Díaz-Cruz MS, Barceló D. Environmental analysis: emerging pollutants. In: Liq. Chromatogr. Appl. 2013;89–410.

  5. Huerta B, Rodríguez-Mozaz S, Barceló D. Pharmaceuticals in biota in the aquatic environment: analytical methods and environmental implications. Anal Bioanal Chem. 2012;404:2611–24. doi:10.1007/s00216-012-6144-y.

    Article  CAS  Google Scholar 

  6. Andreu V, Picó Y. Determination of currently used pesticides in biota. Anal Bioanal Chem. 2012;404:2659–81. doi:10.1007/s00216-012-6331-x.

    CAS  Google Scholar 

  7. Bijlsma L, Beltrán E, Boix C, Sancho JV, Hernández F. Improvements in analytical methodology for the determination of frequently consumed illicit drugs in urban wastewater. Anal Bioanal Chem. 2014;406:4261–72. doi:10.1007/s00216-014-7818-4.

    Article  CAS  Google Scholar 

  8. Rogeberg M, Malerod H, Roberg-Larsen H, Aass C, Wilson SR. On-line solid phase extraction-liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J Pharm Biomed Anal. 2014;87:120–9. doi:10.1016/j.jpba.2013.05.006.

    Article  CAS  Google Scholar 

  9. Chen L, Wang H, Zeng Q, Xu Y, Sun L, Xu H, et al. On-line coupling of solid-phase extraction to liquid chromatography—a review. J Chromatogr Sci. 2009;47:614–23. doi:10.1093/chromsci/47.8.614.

    Article  CAS  Google Scholar 

  10. Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1268:74–83. doi:10.1016/j.chroma.2012.10.032.

    Article  CAS  Google Scholar 

  11. Togola A, Baran N, Coureau C. Advantages of online SPE coupled with UPLC/MS/MS for determining the fate of pesticides and pharmaceutical compounds. Anal Bioanal Chem. 2014;406:1181–91. doi:10.1007/s00216-013-7248-8.

    Article  CAS  Google Scholar 

  12. Panditi VR, Batchu SR, Gardinali PR. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters. Anal Bioanal Chem. 2013;405:5953–64. doi:10.1007/s00216-013-6863-8.

    Article  CAS  Google Scholar 

  13. Fayad PB, Prévost M, Sauvé S. On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry optimized for the analysis of steroid hormones in urban wastewaters. Talanta. 2013;115:349–60. doi:10.1016/j.talanta.2013.05.038.

    Article  CAS  Google Scholar 

  14. Jeon J, Kurth D, Hollender J. Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chem Res Toxicol. 2013;26:313–24. doi:10.1021/tx300457f.

    Article  CAS  Google Scholar 

  15. Hennion MC. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A. 1999;856:3–54. doi:10.1016/S0021-9673(99)00832-8.

    Article  CAS  Google Scholar 

  16. Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77:5407–13. doi:10.1021/ac050390d.

    Article  CAS  Google Scholar 

  17. Gama MR, Collins CH, Bottoli CBG. Nano-liquid chromatography in pharmaceutical and biomedical research. J Chromatogr Sci. 2013;51:694–703. doi:10.1093/chromsci/bmt023.

    Article  CAS  Google Scholar 

  18. Chervet JP, Ursem M, Salzmann JP. Instrumental requirements for nanoscale liquid chromatography. Anal Chem. 1996;68:1507–12. doi:10.1021/ac9508964.

    Article  CAS  Google Scholar 

  19. Vissers JPC. Recent developments in microcolumn liquid chromatography. J Chromatogr A. 1999;856:117–43. doi:10.1016/S0021-9673(99)00692-5.

    Article  CAS  Google Scholar 

  20. Juraschek R, Dülcks T, Karas M. Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom. 1999;10:300–8.

    Article  CAS  Google Scholar 

  21. Shen Y, Moore RJ, Zhao R, Blonder J, Auberry DL, Masselon C, et al. High-efficiency on-line solid-phase extraction coupling to 15-150-μm-i.d. column liquid chromatography for proteomic analysis. Anal Chem. 2003;75:3596–605.

    Article  CAS  Google Scholar 

  22. Shen Y, Tolić N, Masselon C, Pasa-Tolić L, Camp DG, Hixson KK, et al. Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Anal Chem. 2004;76:144–54. doi:10.1021/ac030096q.

    Article  CAS  Google Scholar 

  23. Holste A, Tholey A, Hung CW, Schaumlöffel D. Nano-high-performance liquid chromatography with online precleaning coupled to inductively coupled plasma mass spectrometry for the analysis of lanthanide-labeled peptides in tryptic protein digests. Anal Chem. 2013;85:3064–70. doi:10.1021/ac303618v.

    Article  CAS  Google Scholar 

  24. Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343–94. doi:10.1021/cr3003533.

    Article  CAS  Google Scholar 

  25. Wilson SR, Malerød H, Holm A, Molander P, Lundanes E, Greibrokk T. On-line SPE-Nano-LC-Nanospray-MS for rapid and sensitive determination of perfluorooctanoic acid and perfluorooctane sulfonate in river water. J Chromatogr Sci. 2007;45:146–52.

    Article  CAS  Google Scholar 

  26. Berlioz-Barbier A, Baudot R, Wiest L, Gust M, Garric J, Cren-Olivé C, et al. MicroQuEChERS-nanoliquid chromatography-nanospray-tandem mass spectrometry for the detection and quantification of trace pharmaceuticals in benthic invertebrates. Talanta. 2015;132:796–802. doi:10.1016/j.talanta.2014.10.030.

    Article  CAS  Google Scholar 

  27. Berlioz-Barbier A, Buleté A, Faburé J, Garric J, Cren-Olivé C, Vulliet E. Multi-residue analysis of emerging pollutants in benthic invertebrates by modified micro-Quick-Easy-Cheap-Efficient-Rugged-Safe extraction and nanoliquid chromatography-nanospray-tandem mass spectrometry analysis. J Chromatogr A. 2014;1367:16–32. doi:10.1016/j.chroma.2014.09.044.

    Article  CAS  Google Scholar 

  28. David A, Abdul-Sada A, Lange A, Tyler CR, Hill EM. A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. J Chromatogr A. 2014;1365:72–85. doi:10.1016/j.chroma.2014.09.001.

    Article  CAS  Google Scholar 

  29. Chetwynd AJ, David A, Hill EM, Abdul-Sada A. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome. J Mass Spectrom. 2014;49:1063–9. doi:10.1002/jms.3426.

    Article  CAS  Google Scholar 

  30. Haun J, Leonhardt J, Portner C, Hetzel T, Tuerk J, Teutenberg T, et al. Online and splitless NanoLC × CapillaryLC with quadrupole/time-of-flight mass spectrometric detection for comprehensive screening analysis of complex samples. Anal Chem. 2013;85:10083–90. doi:10.1021/ac402002m.

    Article  CAS  Google Scholar 

  31. Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397:943–51. doi:10.1007/s00216-010-3608-9.

    Article  CAS  Google Scholar 

  32. Singer H, Jaus S, Hanke I, Lück A, Hollender J, Alder AC. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ Pollut. 2010;158:3054–64. doi:10.1016/j.envpol.2010.06.013.

    Article  CAS  Google Scholar 

  33. Kovalova L, McArdell CS, Hollender J. Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. J Chromatogr A. 2009;1216:1100–8. doi:10.1016/j.chroma.2008.12.028.

    Article  CAS  Google Scholar 

  34. Maier-Rosenkranz J. uLC/NanoLC - optimization and troubleshooting. In: HPLC Made to Meas. A Pract. Handb. Optim. 2006;467–486.

  35. Singer H, Huntscha S, Hollender J, Mazacek J. Multikomponenten-Screening für den Rhein bei Basel. 2009. http://www.eawag.ch/fileadmin/Domain1/Abteilungen/uchem/Analytik/pdf/Multikomponenten-Screening_fuer_den_Rhein.pdf. Accessed 21 Sept 2015

  36. Kuklenyik Z, Ye X, Needham LL, Calafat AM. Automated solid-phase extraction approaches for large scale biomonitoring studies. J Chromatogr Sci. 2009;47:12–8.

    Article  CAS  Google Scholar 

  37. Snyder LR, Kirkland JJ, Dolan JW. Basic concepts and the control of separation, Introd. to Mod. Liq. Chromatogr. Hoboken: Wiley; 2010. p. 19–86.

    Google Scholar 

  38. Stewart II, Zhao L, Le Bihan T, Larsen B, Scozzaro S, Figeys D, et al. The reproducible acquisition of comparative liquid chromatography/tandem mass spectrometry data from complex biological samples. Rapid Commun Mass Spectrom. 2004;18:1697–710. doi:10.1002/rcm.1538.

    Article  CAS  Google Scholar 

  39. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol. 2009;43:7039–46.

    Article  CAS  Google Scholar 

  40. Sun JJ, Fritz JS. Chemically modified resins for solid-phase extraction. J Chromatogr. 1992;590:197–202.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss National Science Foundation, grant number 315230141190. We acknowledge Thorsten Schmidt as the external supervisor of Jonas Mechelke during his Masters thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Hollender.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.81 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stravs, M.A., Mechelke, J., Ferguson, P.L. et al. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem 408, 1879–1890 (2016). https://doi.org/10.1007/s00216-015-9294-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9294-x

Keywords

Navigation