Skip to main content
Log in

Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Iron deficiency anemia and zinc deficiency are major health concerns across the world and can be addressed by biofortification breeding of higher mineral concentration in staple crops, such as common bean. Wild common beans have for the most part had higher average seed mineral concentration than cultivars of this species but have small un-commercial seeds. A logical approach for the transfer of the seed mineral trait from wild beans to cultivated beans is through the advanced backcross breeding approach. The goal of this study was to analyze a population of 138 BC2F3:5 introgression lines derived from the very high iron wild genotype G10022 backcrossed into the genetic background of the commercial-type variety ‘Cerinza’, a large-red seeded bush bean cultivar of the Andean genepool. In addition to measuring seed mineral accumulation traits and the quantitative trait loci (QTL) controlling these traits we were interested in simultaneously testing the adaptation of the introgression lines in two replicated yield trials. We found the cross to have high polymorphism and constructed an anchored microsatellite map for the population that was 1,554-cM long and covered all 11 linkage groups of the common bean genome. Through composite interval mapping (CIM) and single point analysis (SPA), we identified associations of markers and mineral traits on b01, b06, b07, b08, b10 and b11 for seed iron concentration, and markers on b01, b04 and b10 for seed zinc concentration. The b07 and b08 QTL aligned with previous QTL for iron concentration. A large number of QTL were found for seed weight (9 with CIM and 36 with SPA analysis) and correlations between seed size and mineral content affected the identification of iron and zinc contents’ QTL on many linkage groups. Segregation distortion around domestication genes made some areas difficult to introgress. However, in conclusion, the advanced backcross program produced some introgression lines with high mineral accumulation traits using a wild donor parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afanador LK, Hadley SD, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean. Bean Improv Coop 35:10–11

    Google Scholar 

  • Ando T, Yamamoto T, Shimizu T, Ma X, Shomura A, Takeguchi Y et al (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet 119:881–890

    Article  Google Scholar 

  • Astudillo C, Blair MW (2008) Evaluación del contenido de hierro y zinc en semilla y su respuesta al nivel de fósforo en variedades de fríjol colombianas. Agronomia Colombiana 26:471–476

    Google Scholar 

  • Basten C, Weir BS, Zeng Z-B (2001) Windows QTL Cartographer. v 1.21. Software. Department of Statistics. North Carolina State University, USA

  • Blair MW, Pedraza F, Buendía HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Astudillo C, Restrepo J, Bravo LC, Villada D, Beebe SE (2005) Análisis multi-locacional de líneas de fríjol arbustivo con alto contenido de hierro en el departamento de Nariño. Fitotecnia Colombiana 5:20–27

    Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Buendia HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Astudillo Beebe SE, Roa I, Kimani P, Chirwa R (2009a) Biofortification of common bean (Phaseolus vulgaris L.) via traditional and novel breeding approaches. J Danish Biochem Soc (Biozoom) 1:25–28

    Google Scholar 

  • Blair MW, Astudillo C, Grusak M, Graham R, Beebe S (2009b) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breeding 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Muñoz M, Pedraza F, Giraldo MC, Buendía HF, Hurtado N (2009c) Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched small insert genomic libraries. Genome 52:772–782

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Muñoz-Torres M, Giraldo MC, Pedraza F (2009d) Development and diversity assessment of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Bio 9:100

    Article  Google Scholar 

  • Blair MW, Knewtson SJB, Astudillo C, Li CM, Fernandez AC, Grusak MA (2010a) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215

    Article  PubMed  Google Scholar 

  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010b) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Mesoamerican common beans (Phaseolus vulgaris L.). Theor Appl Genet 121:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011a) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–523

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Hurtado N, Chavarro MC, Muñoz-Torres MC, Tomkins J, Wing R (2011b) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Bio 11:50

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Coyne DP (1967) Photoperiodism: inheritance and linkage studies in Phaseolus vulgaris. J Hered 58:313–314

    Google Scholar 

  • Coyne DP (1970) Genetic control of a photoperiod-temperature response for time of flowering in beans (Phaseolus vulgaris L.). Crop Sci 10:246–248

    Article  Google Scholar 

  • Delaney DE, Bliss EA (1991) Selection for increased percentage phaseolin in common bean. 2. Changes in frequency of seed protein alleles with S1 family recurrent selection. Theor Appl Genet 93:306–311

    Article  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 139:1147–1162

    Google Scholar 

  • Fulton T, Emmatty D, Eshed Y, Lopez J, Petiard V et al (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 114:881–894

    Article  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Ghesquiere A, Sequier J, Second G, Lorieux M (1997) First steps toward a rational use of African rice, Oryza glaberrima, in rice breeding: a contig line concept. Euphytica 101:31–39

    Article  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007a) Genetic mapping of microsatellite markers in common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706

    PubMed  CAS  Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007b) Genetic mapping of microsatellite markers in common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706

    PubMed  CAS  Google Scholar 

  • Gu W, Zhu JQ, Wallace DH, Singh SP, Weeden NF (1998) Analysis of genes controlling photoperiod sensitivity in common bean using DNA markers. Euphytica 102:125–132

    Article  CAS  Google Scholar 

  • Guzmán-Maldonado SH, Martinez O, Acosta-Gallegos JA, Guevara-Lara F (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  Google Scholar 

  • Guzmán-Maldonado SH, Acosta-Gallegos J, Paredes-Lopéz O (2004) Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.). J Sci Food Agric 80:1874–1881

    Article  Google Scholar 

  • Hannah MA, Krämer KM, Geffroy V, Kopka J, Blair MW, Erban A, Vallejos CE, Heyer AG, Sanders FET, Millner PA, Pilbeam DJ (2007) The DL gene system in common bean (Phaseolus vulgaris L.) causes programmed root death due to a shoot-derived inhibitory signal. New Phytol 176:537–549

    Article  PubMed  CAS  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa, using backcross inbred lines. Theor Appl Genet 100:997–1003

    Article  Google Scholar 

  • McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  PubMed  CAS  Google Scholar 

  • Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352

    Article  PubMed  Google Scholar 

  • Park SO, Coyne DP, Jung G, Skroch PW, Arnaud-Santana E, Steadman JR, Ariyarathne HM, Nienhuis J (2000) Mapping of QTL for seed size and shape traits in common bean. J Amer Soc Hort Sci 125:466–475

    CAS  Google Scholar 

  • Pfeiffer W, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci. 47:S88–S105

    Article  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:659–1675

    Google Scholar 

  • Singh SP, Molina A, Gepts P (1995) Potential of wild common bean for seed yield improvement of cultivars in the tropics. Can J Plant Sci 75:807–812

    Article  Google Scholar 

  • Sullivan JG, Bliss FA (1983) Expression of enhanced seed protein content in inbred backcross lines of common bean. J Am Soc Hort Sci 108:787–791

    CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTL from germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Article  Google Scholar 

  • Vallejos CE, Chase C (1991) Extended map for the phaseolin linkage group of Phaseolus vulgaris L. Theor Appl Genet 87:353–357

    Article  Google Scholar 

  • Voorips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. Pan-African Bean Research Alliance, p 133

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Alcides Hincapie for hybridizations between wild and cultivated parents, to Agobardo Hoyos for help with data analysis, to Yercil Viera for field trial management and to C. Astudillo for laboratory training. We are also grateful to Octavio Mosquera and Teresa Fowles for assistance with AAS and ICP analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by C. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, M.W., Izquierdo, P. Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125, 1015–1031 (2012). https://doi.org/10.1007/s00122-012-1891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1891-x

Keywords

Navigation