Skip to main content
Log in

Integrating out geometry: holographic Wilsonian RG and the membrane paradigm

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We formulate a holographic Wilsonian renormalization group flow for strongly coupled systems with a gravity dual, motivated by the need to extract efficiently low energy behavior of such systems. Starting with field theories defined on a cut-off surface in a bulk spacetime, we propose that integrating out high energy modes in the field theory should correspond to integrating out a part of the bulk geometry. We describe how to carry out this procedure in practice in the classical gravity approximation using examples of scalar and vector fields. By integrating out bulk degrees of freedom all the way to a black hole horizon, this formulation defines a refined version of the black hole membrane paradigm. Furthermore, it also provides a derivation of the semi-holographic description of low energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [SPIRES].

    Article  ADS  Google Scholar 

  2. F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena, Phys. Rev. A 8 (1973) 401 [SPIRES].

    ADS  Google Scholar 

  3. K.G. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983) 583 [SPIRES].

    Article  ADS  Google Scholar 

  4. J. Polchinski, Renormalization and effective lagrangians, Nucl. Phys. B 231 (1984) 269 [SPIRES].

    Article  ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  8. L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [SPIRES].

  9. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  11. E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c-theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Distler and F. Zamora, Non-supersymmetric conformal field theories from stable Anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [SPIRES].

    MathSciNet  Google Scholar 

  14. V. Balasubramanian and P. Kraus, Spacetime and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  16. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].

    Article  Google Scholar 

  17. J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  18. A. Lewandowski, M.J. May and R. Sundrum, Running with the radius in RS1, Phys. Rev. D 67 (2003) 024036 [hep-th/0209050] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  19. A. Lewandowski, The Wilsonian renormalization group in Randall-Sundrum. I, Phys. Rev. D 71 (2005) 024006 [hep-th/0409192] [SPIRES].

    ADS  Google Scholar 

  20. S.-S. Lee, Holographic description of quantum field theory, Nucl. Phys. B 832 (2010) 567 [arXiv:0912.5223] [SPIRES].

    Article  ADS  Google Scholar 

  21. S.-S. Lee, Holographic description of large-N gauge theory, Nucl. Phys. B 851 (2011) 143 [arXiv:1011.1474] [SPIRES].

    Article  ADS  Google Scholar 

  22. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [SPIRES].

    ADS  Google Scholar 

  23. I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [SPIRES].

    Article  ADS  Google Scholar 

  24. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [SPIRES].

    Article  ADS  Google Scholar 

  26. T. Damour, Black hole Eddy currents, Phys. Rev. D 18 (1978) 3598 [SPIRES].

    ADS  Google Scholar 

  27. K. Thorne, D. Macdonald and R. Price, Black holes: the membrane paradigm, Yale University Press, Yale U.S.A. (1986).

    Google Scholar 

  28. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Rangamani, Gravity & hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  31. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  32. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [SPIRES].

    ADS  Google Scholar 

  33. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [SPIRES].

    ADS  Google Scholar 

  34. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [SPIRES].

  36. T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [SPIRES].

    Article  ADS  Google Scholar 

  37. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].

    ADS  Google Scholar 

  38. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  39. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Li, A note on relation between holographic RG equation and Polchinski’s RG equation, Nucl. Phys. B 579 (2000) 525 [hep-th/0001193] [SPIRES].

    Article  ADS  Google Scholar 

  41. E.T. Akhmedov, Notes on multi-trace operators and holographic renormalization group, hep-th/0202055 [SPIRES].

  42. E. Pomoni and L. Rastelli, Large-N field theory and AdS tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. E.T. Akhmedov and E.T. Musaev, An exact result for Wilsonian and holographic renormalization group, Phys. Rev. D 81 (2010) 085010 [arXiv:1001.4067] [SPIRES].

    ADS  Google Scholar 

  44. L. Vecchi, The conformal window of deformed CFT’s in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [SPIRES].

    ADS  Google Scholar 

  45. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [SPIRES].

    ADS  Google Scholar 

  48. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  49. I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. L. Vecchi, Multitrace deformations, Gamow states and stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  51. E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].

  52. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  53. R.G. Leigh and A.C. Petkou, SL(2, Z) action on three-dimensional CFTs and holography, JHEP 12 (2003) 020 [hep-th/0309177] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space, to appear.

  55. M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [SPIRES].

    Article  ADS  Google Scholar 

  57. E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].

  58. M. Berkooz, A. Sever and A. Shomer, Double-trace deformations, boundary conditions and spacetime singularities, JHEP 05 (2002) 034 [hep-th/0112264] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  59. W. Mueck, An improved correspondence formula for AdS/CFT with multi-trace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [SPIRES].

    ADS  Google Scholar 

  60. P. Minces, Multi-trace operators and the generalized AdS/CFT prescription, Phys. Rev. D 68 (2003) 024027 [hep-th/0201172] [SPIRES].

    ADS  Google Scholar 

  61. A. Sever and A. Shomer, A note on multi-trace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  62. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund Rangamani.

Additional information

ArXiv ePrint: 1010.4036

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, T., Liu, H. & Rangamani, M. Integrating out geometry: holographic Wilsonian RG and the membrane paradigm. J. High Energ. Phys. 2011, 51 (2011). https://doi.org/10.1007/JHEP08(2011)051

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)051

Keywords

Navigation