Skip to main content
Log in

Wilsonian approach to fluid/gravity duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The problem of gravitational fluctuations confined inside a finite cutoff at radius r = r c outside the horizon in a general class of black hole geometries is considered. Consistent boundary conditions at both the cutoff surface and the horizon are found and the resulting modes analyzed. For general cutoff r c the dispersion relation is shown at long wavelengths to be that of a linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent line-integral formula for the diffusion constant D (r c ) is derived. The dependence on r c is interpreted as renormalization group (RG) flow in the fluid. Taking the cutoff to infinity in an asymptotically AdS context, the formula for D(∞) reproduces as a special case well-known results derived using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound goes to infinity, the fluid becomes incompressible and the Navier-Stokes dispersion relation becomes exact. The resulting universal formula for the diffusion constant D(horizon) reproduces old results from the membrane paradigm. Hence the old membrane paradigm results and new AdS/CFT results are related by RG flow. RG flow-invariance of the viscosity to entropy ratio \( \frac{\eta }{s} \) is shown to follow from the first law of thermodynamics together with isentropy of radial evolution in classical gravity. The ratio is expected to run when quantum gravitational corrections are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking and J.B. Hartle, Energy and angular momentum flow into a black hole, Commun. Math. Phys. 27 (1972) 283 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. J.B. Hartle, Tidal friction in slowly rotating black holes, Phys. Rev. D 8 (1973) 1010 [SPIRES].

    ADS  Google Scholar 

  3. J.B. Hartle, Tidal shapes and shifts on rotating black holes, Phys. Rev. D 9 (1974) 2749 [SPIRES].

    ADS  Google Scholar 

  4. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI, Fance (1979).

  5. T. Damour, Black hole Eddy currents, Phys. Rev. D 18 (1978) 3598 [SPIRES].

    ADS  Google Scholar 

  6. R.L. Znajek, The electric and magnetic conductivity of a Kerr hole, Mon. Not. Roy. Astron. Soc. 185 (1978) 833.

    ADS  Google Scholar 

  7. T. Damour, Surface effects in black hole physics, in the proceedings of the 2nd Marcel Grossmann Meeting on general Relativity, R. Ruffini ed., North-Holland, The Netherlands (1982).

    Google Scholar 

  8. R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. K.S. Thorne, R.H. . Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, U.S.A. (1986), p. 367.

    Google Scholar 

  10. T. Damour and M. Lilley, String theory, gravity and experiment, arXiv:0802.4169 [SPIRES].

  11. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    Article  ADS  Google Scholar 

  12. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Kodama, A. Ishibashi and O. Seto, Brane world cosmology: gauge-invariant formalism for perturbation, Phys. Rev. D 62 (2000) 064022 [hep-th/0004160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].

    ADS  Google Scholar 

  19. P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [SPIRES].

    ADS  Google Scholar 

  20. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  22. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].

    ADS  Google Scholar 

  23. A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B 670 (2009) 442 [arXiv:0806.3797] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  26. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Black holes in five-dimensional gauged supergravity with higher derivatives, JHEP 12 (2009) 045 [arXiv:0812.3572] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

    ADS  Google Scholar 

  30. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  31. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

    Article  ADS  Google Scholar 

  32. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  33. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].

    Article  ADS  Google Scholar 

  36. N. Banerjee and S. Dutta, Nonlinear hydrodynamics from flow of retarded Green’s function, JHEP 08 (2010) 041 [arXiv:1005.2367] [SPIRES].

    Article  ADS  Google Scholar 

  37. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  39. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].

  40. J. Polchinski, Semi-holographic Fermi liquids, talk at Strings 2010, March 15–19, College Station, U.S.A. (2010).

  41. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  44. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. E.P. Verlinde, On the origin of gravity and the laws of Newton, arXiv:1001.0785 [SPIRES].

  46. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].

  47. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  48. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. R. Gopakumar, S. Minwalla, N. Seiberg and A. Strominger, OM theory in diverse dimensions, JHEP 08 (2000) 008 [hep-th/0006062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  52. T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Rept. Prog. Phys. 73 (2010) 046901 [arXiv:0911.5004] [SPIRES].

    Article  ADS  Google Scholar 

  53. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Bredberg.

Additional information

ArXiv ePrint: 1006.1902

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredberg, I., Keeler, C., Lysov, V. et al. Wilsonian approach to fluid/gravity duality. J. High Energ. Phys. 2011, 141 (2011). https://doi.org/10.1007/JHEP03(2011)141

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)141

Keywords

Navigation