Skip to main content
Log in

Holography and the sound of criticality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using gauge/gravity duality techniques, we discuss the sound-channel retarded correlators of vector and tensor conserved currents in a class of (2+1)-dimensional strongly-coupled field theories at zero temperature and finite charge density, assumed to be holographically dual to the extremal Reissner-Nordström AdS4 black hole. Using a combination of analytical and numerical methods, we determine the quasinormal mode spectrum at finite momentum for the coupled gravitational and electromagnetic perturbations, and discuss the appropriate choice of gauge-invariant variables (master fields) in order for the black hole quasinormal frequencies to reproduce the field theory spectrum. We discuss the role of the near horizon AdS2 geometry in determining the low-frequency behavior of retarded correlators in the boundary theory, and comment on the emergence of criticality in the IR. In addition, we establish the existence of a sound mode at zero temperature and compute the speed of sound and sound attenuation constant numerically, obtaining a result consistent with the expectations from the zero temperature limit of hydrodynamics. The dispersion relation of higher resonances is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  3. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  4. G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].

  5. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].

  6. M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].

    Article  ADS  Google Scholar 

  7. M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].

    Article  ADS  Google Scholar 

  8. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  9. I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Hydrodynamics and beyond in the strongly coupled N =4 plasma, JHEP 07 (2008) 133 [arXiv:0805.2570] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].

    ADS  Google Scholar 

  13. G. Michalogiorgakis and S.S. Pufu, Low-lying gravitational modes in the scalar sector of the global AdS 4 black hole, JHEP 02 (2007) 023 [hep-th/0612065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat spacetimes, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. D.T. Son and A.O. Starinets, Hydrodynamics of R -charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations, Phys. Rev. D 67 (2003) 064020 [gr-qc/0301052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].

    ADS  Google Scholar 

  23. E.W. Leaver, Quasinormal modes of Reissner-Nordstrom black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. E.S.C. Ching, P.T. Leung, W.M. Suen and K. Young, Wave propagation in gravitational systems: Late time behavior, Phys. Rev. D 52 (1995) 2118 [gr-qc/9507035] [SPIRES].

    ADS  Google Scholar 

  25. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Amado, C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Residues of Correlators in the Strongly Coupled N =4 Plasma, Phys. Rev. D 77 (2008) 065004 [arXiv:0710.4458] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. Jottar.

Additional information

ArXiv ePrint: 1005.4075

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edalati, M., Jottar, J.I. & Leigh, R.G. Holography and the sound of criticality. J. High Energ. Phys. 2010, 58 (2010). https://doi.org/10.1007/JHEP10(2010)058

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)058

Keywords

Navigation