Skip to main content
Log in

High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats

La obesidad inducida por dieta alta en grasas modifica el patrón de metilación del promotor de la leptina en la rata

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Leptin is an adipokine involved in body weight and food intake regulation whose promoter region presents CpG islands that could be subject to dynamic methylation. This methylation process could be affected by environmental (e.g. diet) or endogenous (e.g., adipocyte differentiation, inflammation, hypoxia) factors, and could influence adipocyte leptin gene expression. The aim of this article was to study whether a high-energy diet may affect leptin gene promoter methylation in rats. A group of eleven male Wistar rats were assigned into two dietary groups, one fed on a control diet for 11 weeks and the other on a high-fat cafeteria diet. Rats fed a high-energy diet become overweight and hyperleptin emic as compared to the controls. DNA isolated from retroperitoneal adipocytes was treated with bisulfite and a distal portion of leptin promoter (from −694 to −372 bp) including 13 CpG sites was amplified by PCR and sequenced. The studied promoter portion was slightly more methylated in the cafeteria-fed animals, which was statistically significant (p<0.05) for one of the CpG sites (located at the position −443). In obese rats, such methy lation was associated to lower circulating leptin levels, suggesting that this position could be important in the regulation of leptin gene expression, probably by being a target sequence of different transcription factors. Our findings reveal, for the first time, that leptin methylation pattern can be influenced by diet-induced obesity, and suggest that epigenetic mechanisms could be involved in obesity by regulating the expression of important epiobesigenic genes.

Resumen

La leptina es una adipoquina implicada en la regulación del peso corporal y la ingesta energética cuya región promotora presenta islas CpG que podrían ser metiladas dinámicamente. Este proceso de metilación podría verse afectado por factores ambientales, como la dieta, o endógenos, como la diferenciación adipocitaria, inflamación o hipoxia, y podría influir en la expresión de leptina por parte de los adipocitos. El objetivo de este artículo es estudiar si una dieta alta en grasa podría afectar a la metilación del promotor de la leptina en ratas. Un grupo de once ratas Wistar macho fue dividido en dos subgrupos, uno alimentado con dieta control durante 11 semanas y el otro con dieta alta en grasa (dieta de cafetería). Las ratas alimentadas con la dieta rica en grasa presentaron sobrepeso e hiperleptinemia. El ADN aislado de los adipocitos retroperitoneales fue tratado con bisulfito y una porción distal del promotor de la leptina (de la base-694 a la — 372), conteniendo 13 sitios CpG, fue amplificada por PCR y secuenciada. Esta región del promotor apareció ligeramente más metilada en los animales alimentados con dieta de cafetería, lo cuál fue especialmente significativo (p <0,05) para uno de los sitios CpG (en la posición-443). En las ratas obesas, la metilación se asoció a una disminución de los niveles de leptina circulante, lo que sugiere que esta posición podría ser importante en la regulación de la expresión génica de esta adipoquina, probablemente por ser una secuencia diana de diferentes factores de trnascripción. Nuestos resultados, por primera vez, ponen de manifiesto que el patrón de metilación del promotor de la leptina puede estar influido por la obesidad inducida por la dieta, y sugieren que los mecanismos epigenéticos podrían estar implicados en la reciente pandemia de obesidad mediante la regulación de la expresión de importantes genes epiobesigénicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beischlag, T.V., Luis Morales, J., Hollingshead, B.D. and Perdew, G.H. (2008): The aryl hydrocarbon receptor complex and the control of gene expression.Crit Rev Eukaryot Gene Expr,18, 207–250.

    PubMed  CAS  Google Scholar 

  2. Campion, J., Milagro, F.I., Fernández, D. and Martínez, J.A. (2006): Diferential gene expression and adiposity reduction induced by ascorbic acid supplementation in a cafeterial model of obesity.J Physiol Biochem,62, 71–80.

    Article  PubMed  CAS  Google Scholar 

  3. Edwards, T. M. and Myers, J. P. (2007): Environmental exposures and gene regulation in disease etiology.Environ Health Perspect,115, 1264–1270.

    PubMed  CAS  Google Scholar 

  4. Finnegan, E.J. (2001): Is plant gene expression regulated globally?Trends Genet,17, 361–365.

    Article  PubMed  CAS  Google Scholar 

  5. Franco, R., Schoneveld, O., Georgakilas, A.G. and Panayiotidis, M.I. (2008): Oxidative stress, DNA methylation and carcinogenesis.Cancer Lett,266, 6–11.

    Article  PubMed  CAS  Google Scholar 

  6. Gallou-Kabani, C., Vige, A., Gross, M.S. and Junien, C. (2007): Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond.Clin Chem Lab Med,45, 321–327.

    Article  PubMed  CAS  Google Scholar 

  7. García-Díaz, D.F., Campion, J., Milagro, F.I., Lomba, A., Marzo, F. and Martínez, J.A. (2007): Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed rats.J Physiol Biochem,63, 337–346.

    Article  PubMed  Google Scholar 

  8. Grosfeld, A., Andre, J., Hauguel-De Mouzon, S., Berra, E., Pouyssegur, J. and Guerre-Millo, M. (2002): Hypoxia-inducible factor 1 transactivates the human leptin gene promoter.J Biol Chem,277, 42953–42957.

    Article  PubMed  CAS  Google Scholar 

  9. Hernández-Morante, J.J., Milagro, F.I., Lujan, J.A., Martínez, J.A., Zamora, S. and Garaulet, M. (2008): Insulin effect on adipose tissue (AT) adiponectin expression is regulated by the insulin resistance status of the patients.Clin Endocrinol (Oxf),69, 412–417.

    Article  CAS  Google Scholar 

  10. Iguchi-Argia, S.M. and Schaffner, W. (1989): CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation.Genes Dev,3, 612–619.

    Article  Google Scholar 

  11. Johnson, I.T. and Belshaw, N.J. (2008): Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia.Food Chem Toxicol,46, 1346–1359.

    Article  PubMed  CAS  Google Scholar 

  12. Junien, C. (2006): Impact of diets and nutrients/drugs on early epigenetic programming.J Inherit Metab Dis,29, 359–365.

    Article  PubMed  CAS  Google Scholar 

  13. Junien, C and Nathanielsz, P. (2007): Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes.Obes Rev,8, 487–502.

    Article  PubMed  CAS  Google Scholar 

  14. Kotsopoulos, J., Sohn, K.J. and Kim, Y.I. (2008): Postweaning dietary folate deficiency provided through childhood to puberty permanently increases genomic DNA methylation in adult rat liver.J Nutr,138, 703–709.

    PubMed  CAS  Google Scholar 

  15. Kumaki, Y., Oda, M. and Okano, M. (2008): QUMA: quantification tool for methylation analysis.Nucleic Acids Res,36, W170–175.

    Article  PubMed  CAS  Google Scholar 

  16. Li, L.C. and Dahiya, R. (2002): Meth Primer: designing primers for methylation PCRs.Bioinformatics,18, 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, L., Li, Y. and Tollefsbol, T.O. (2008): Geneenvironment interactions and epigenetic basis of human diseases.Curr Issues Mol Biol,10, 25–36.

    PubMed  CAS  Google Scholar 

  18. Marti, A., Berraondo, B. and Martínez, J.A. (1999): Leptin: physiological actions.J Physiol Biochem,55, 43–49.

    PubMed  CAS  Google Scholar 

  19. Melzner, I., Scott, V., Dorsch, K., Fischer, P., Wabitsch, M., Bruderlein, S., Hasel, C. and Moller, P. (2002): Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinet CpGs in its proximal promoter.J Biol Chem,277, 45420–45427.

    Article  PubMed  CAS  Google Scholar 

  20. Milagro, F.I., Campion, J. and Martínez, J.A. (2007): 1-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.J Steroid Biochem Mol Biol,104, 81–84.

    Article  PubMed  CAS  Google Scholar 

  21. Rocha, S. (2007): Gene regulation under low oxygen: holding your breath for transcription.Trends Biochem Sci,32, 389–397.

    Article  PubMed  CAS  Google Scholar 

  22. Semenza, G.L. and Wang, G.L. (1992): A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transciptional activation.Mol Cell Biol,12, 5447–5454.

    PubMed  CAS  Google Scholar 

  23. Shahrazad, S., Bertrand, K., Minhas, K. and Coomber, B.L. (2007): Induction of DNA hypomethylation by tumor hypoxia.Epigenetics,2, 119–125.

    Google Scholar 

  24. Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A. and Meehan, R.R. (2002): DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos.Dev Biol,243, 155–165.

    Article  PubMed  CAS  Google Scholar 

  25. Stenvinkel, P., Karimi, M., Johansson, S., Axelsson, J., Suliman, M., Lindholm, B., Heimburger, O., Barany, P., Alvestrand, A., Nordfors, L., Qureshi, A.R., Ekstrom, T.J. and Schalling, M. (2007): Impact of inflammation on epigenetic DNA methylation — a novel risk factor for cardiovascular disease?J Intern Med,261, 488–499.

    Article  PubMed  CAS  Google Scholar 

  26. Stoger, R. (2006): In vivo methylation patterns of the leptin promoter in human and mouse.Epigenetics,1, 155–162.

    Article  PubMed  Google Scholar 

  27. Tang, W.Y. and Ho, S.M. (2007): Epigenetic reprogramming and imprinting in origins of disease.Rev Endocr Metab Disord,8, 173–182.

    Article  PubMed  Google Scholar 

  28. Teodoridis, J.M., Strathdee, G. and Brown, R. (2004). Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker.Drug Resist Updat,7, 267–278.

    Article  PubMed  CAS  Google Scholar 

  29. Trayhurn, P., Wang, B. and Wood, I.S. (2008): Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?Br J Nutr,100, 227–235.

    Article  PubMed  CAS  Google Scholar 

  30. Vickers, M.H. (2007): Developmental programming and adult obesity: the role of leptin.Curr Opin Endocrinol Diabetes Obes,14, 17–22.

    PubMed  CAS  Google Scholar 

  31. Vickers, M.H., Gluckman, P.D., Coveny, A.H., Hofman, P.L., Cutfield, W.S., Gertler, A., Breier, B.H. and Harris, M. (2008) The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy.Endocrinology,149, 1906–1913.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, B., Wood, I.S. and Trayhurn, P. (2007): Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes.Pflugers Arch,455, 479–492.

    Article  PubMed  CAS  Google Scholar 

  33. Waterland, R. and Rached, M. (2006): Developmental establishment of epigenotype: a role for dietary fatty acids?Scand J Food Nutr,50, 21–26.

    Article  Google Scholar 

  34. Waterland, R.A. (2006): Assessing the effects of high methionine intake on DNA methylation.J Nutr,136, 1706S-1710S.

    PubMed  CAS  Google Scholar 

  35. Wilson, A.G. (2008): Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases.J Periodontol,79, 1514–1519.

    Article  PubMed  CAS  Google Scholar 

  36. Woods, S.L. and Whitelaw, M.L. (2002): Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Crosstalk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors.J Biol Chem,277, 10236–10243.

    Article  PubMed  CAS  Google Scholar 

  37. Xing, Y, Shi, S., Le, L., Lee, C.A., Silver-Morse, L. and Li, W.X. (2007): Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila.PLoS Genet,3, 1598–606.

    Article  PubMed  CAS  Google Scholar 

  38. Yokomori, N., Tawata, M. and Onaya, T. (2002): DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells.Siabetalogia 45, 140–148.

    Article  CAS  Google Scholar 

  39. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J.M. (1994): Positional cloning of the mouse obese gene and its human homologue.Nature,372, 425–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Martínez.

Additional information

Both authors have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milagro, F.I., Campión, J., García-Díaz, D.F. et al. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J. Physiol. Biochem. 65, 1–9 (2009). https://doi.org/10.1007/BF03165964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165964

Key words

Palabras clave

Navigation