Skip to main content
Log in

Impact of diets and nutrients/drugs on early epigenetic programming

  • SSIEM SYMPOSIUM 2005
  • Published:
Journal of Inherited Metabolic Disease

Summary

Specific, often unbalanced diets are used to circumvent the metabolic defects of patients with monogenic inborn errors of metabolism. Human epidemiological studies and appropriately designed dietary interventions in animal models have provided considerable evidence to suggest that nutritional imbalance and metabolic disturbances, during critical time windows of developmental programming, may have a persistent effect on the health of the child and later in adulthood. Thus patients with monogenic inborn errors of metabolism may also suffer additional types of alterations due to the lack or excess of key nutrients. Interactions of nutrients with the epigenetic machinery lead to epigenetic changes associated with chromatin remodelling and regulation of gene expression that underlie the developmental programming of pathological consequences in adulthood. Today, with the explosion of new technologies, we can explore on a large scale the effects of nutrients on the level of expression of thousands of expressed genes (nutritional genomics and epigenomics), the corresponding protein products and their posttranslationally modified derivatives (proteomics), and the host of metabolites (metabolomics) generated from endogenous metabolic processes or exogenous dietary nutrients and can establish the relationship between these biological entities and diet, health or disease. The combination of these various lines of research on epigenetic programming processes should highlight new strategies for the prevention and treatment of inborn errors of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308: 1466–1469.

    Article  PubMed  CAS  Google Scholar 

  • Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L (2004) Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 561(Pt 2): 355–377.

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ, Clark PM (1997) Fetal undernutrition and disease in later life. Rev Reprod 2(2): 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Boloker J, Gertz SJ, Simmons RA (2002) Gestational diabetes leads to the development of diabetes in adulthood in the rat. Diabetes 51(5): 1499–1506.

    PubMed  CAS  Google Scholar 

  • Brown R, Strathdee G (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol Med 8(4 Supplement): S43–48.

    Article  PubMed  CAS  Google Scholar 

  • Dabelea D, Hanson RL, Lindsay RS, et al (2000) Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49(12): 2208–2211.

    PubMed  CAS  Google Scholar 

  • Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468): 1415–1428.

    Article  PubMed  CAS  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990): 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome. Diabetes 54: 1899–1906.

    PubMed  CAS  Google Scholar 

  • Han J, Xu J, Epstein PN, Liu YQ (2005) Long-term effect of maternal obesity on pancreatic beta cells of offspring: reduced beta cell adaptation to high glucose and high-fat diet challenges in adult female mouse offspring. Diabetologia 48(9): 1810–1818.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33(Supplement): 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Kelly TL, Trasler JM (2004) Reproductive epigenetics. Clin Genet 65(4): 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Khan IY, Dekou V, Hanson M, Poston L, Taylor P (2004) Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 110: 1097–1102.

    Article  PubMed  CAS  Google Scholar 

  • Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, Taylor PD (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 288(1): R127–133.

    PubMed  CAS  Google Scholar 

  • Lane N, Dean W, Erhardt S, et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35(2): 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Neel JV (1962) Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’? Am J Hum Genet 14: 353–362.

    PubMed  CAS  Google Scholar 

  • Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427(6973): 411–412.

    Article  PubMed  CAS  Google Scholar 

  • Ozanne SE, Fernandez-Twinn D, Hales CN (2004) Fetal growth and adult diseases. Semin Perinatol 28(1): 81–87.

    Article  PubMed  Google Scholar 

  • Plagemann A, Harder T, Franke K, Kohlhoff R (2002) Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care 25(1): 16–22.

    PubMed  Google Scholar 

  • Rakyan VK, Chong S, Champ ME, et al (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100(5): 2538–2543.

    Article  PubMed  CAS  Google Scholar 

  • Spotswood HT, Turner BM (2002) An increasingly complex code. J Clin Invest 110(5): 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Aalinkeel R, Song F, Patel MS (2003) Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes 52(4): 984–990.

    PubMed  CAS  Google Scholar 

  • Strathdee G, Brown R (2002) Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert Opin Investig Drugs 11(6): 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Waddington C (1942) Canalisation of development and inheritance of acquired characters. Nature 152: 563.

    Google Scholar 

  • Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69(2): 179–197.

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15): 5293–5300.

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20(1): 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, et al (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7(8): 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genetics 27(4): 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Xu GL, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nature Genetics 17(4): 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Spratt SK, Liu Q, et al (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275(43): 33850–33860.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Junien.

Additional information

Communicating editor: Jean-Marie Saudubray

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junien, C. Impact of diets and nutrients/drugs on early epigenetic programming. J Inherit Metab Dis 29, 359–365 (2006). https://doi.org/10.1007/s10545-006-0299-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0299-7

Keywords

Navigation