Skip to main content
Log in

A comprehensive review of genetic causes of obesity

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity.

Data sources

This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: “obesity”, “obesity and genetics”, “leptin”, “Prader-Willi syndrome”, and “melanocortins”. The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports.

Results

The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery.

Conclusions

Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed.

Video Abstract (MP4 1041807 KB)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: a comprehensive review. C R Biol. 2017;340:87–108.

    Article  PubMed  Google Scholar 

  2. Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;18:603–34.

    Article  CAS  PubMed  Google Scholar 

  3. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.

    Article  CAS  PubMed  Google Scholar 

  4. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    Article  CAS  PubMed  Google Scholar 

  5. Concepción-Zavaleta M, Ramos-Yataco A, Alcalde-Loyola C, Moreno-Marreros D, Coronado-Arroyo J, Ildefonso-Najarro S, et al. Complications of obesity in children and adolescents during covid-19 pandemic: a narrative review. Rev Cuerpo Méd Hosp Nac Almanzor Aguinaga Asenjo. 2021;14:55–61.

    Google Scholar 

  6. Peinado Fabregat MI, Saynina O, Sanders LM. Obesity and overweight among children with medical complexity. Pediatrics. 2022;151:e2022058687.

    Article  Google Scholar 

  7. Kumari S, Shukla S, Acharya S. Childhood obesity: prevalence and prevention in modern society. Cureus. 2022;14:e31640.

    PubMed  PubMed Central  Google Scholar 

  8. Centers for disease control and prevention. Childhood obesity facts. Overweight and obesity. 2022. https://www.cdc.gov/obesity/data/childhood.html. Accessed 30 Dec 2022.

  9. World obesity. World obesity Atlas 2023. London: Global Obesity Federation; 2023. https://data.worldobesity.org/publications/?cat=19. Accessed 20 Mar 2023.

  10. World Health Organization. WHO European Regional obesity report 2022. Copenhagen: WHO Regional Office for Europe; 2022.

    Google Scholar 

  11. Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133:155217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu FY, Yin RX. Recent progress in epigenetics of obesity. Diabetol Metab Syndr. 2022;14:171.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahmoud AM. An overview of epigenetics in obesity: the role of lifestyle and therapeutic interventions. Int J Mol Sci. 2022;23:1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kahan LG, Mehrzad R. Chapter 10-environmental factors related to the obesity epidemic. In: Mehrzad R, editor. Obesity. Amsterdam: Elsevier; 2020. p. 117–39.

    Chapter  Google Scholar 

  15. Von Noorden C. Section VII. Diabetes mellitus. In: Clinical treatises on pathology and therapy of disorders of metabolism and nutrition. New York: E.B. Treat & Co; 1907. p. 211.

    Google Scholar 

  16. Malhotra S, Sivasubramanian R, Srivastava G. Evaluation and management of early onset genetic obesity in childhood. J Pediatr Genet. 2021;10:194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120–33.

    Article  CAS  PubMed  Google Scholar 

  18. Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab. 2021;32:488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tas A, Atabey M, Gokcen P, Ozel MI, Karagoz ZK, Ugur K, et al. Leptin/melanocortin pathway hormones in obese patients after laparoscopic sleeve gastrectomy. Eur Rev Med Pharmacol Sci. 2022;26:1484–91.

    CAS  PubMed  Google Scholar 

  20. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11:1164–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakagomi A, Okada S, Yokoyama M, Yoshida Y, Shimizu I, Miki T, et al. Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. NPJ Aging Mech Dis. 2015;1:15009.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spetter MS, Feld GB, Thienel M, Preissl H, Hege MA, Hallschmid M. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control. Sci Rep. 2018;8:2736.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prida E, Fernández-González S, Pena-León V, Pérez-Lois R, Fernø J, Seoane LM, et al. Crosstalk between melanin concentrating hormone and endocrine factors: implications for obesity. Int J Mol Sci. 2022;23:2436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dayton K, Miller J. Finding treatable genetic obesity: strategies for success. Curr Opin Pediatr. 2018;30:526–31.

    Article  PubMed  Google Scholar 

  26. Schalla MA, Taché Y, Stengel A. Neuroendocrine peptides of the gut and their role in the regulation of food intake. Compr Physiol. 2021;11:1679–730.

    Article  PubMed  Google Scholar 

  27. Rovella V, Rodia G, Di Daniele F, Cardillo C, Campia U, Noce A, et al. Association of gut hormones and microbiota with vascular dysfunction in obesity. Nutrients. 2021;13:613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Psilopanagioti A, Nikou S, Logotheti S, Arbi M, Chartoumpekis DV, Papadaki H. Glucagon-like peptide-1 receptor in the human hypothalamus is associated with body mass index and colocalizes with the anorexigenic neuropeptide nucleobindin-2/nesfatin-1. Int J Mol Sci. 2022;23:14899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Devesa J. The complex world of regulation of pituitary growth hormone secretion: the role of ghrelin, klotho, and nesfatins in it. Front Endocrinol (Lausanne). 2021;12:636403.

    Article  PubMed  Google Scholar 

  30. Motta G, Allasia S, Ghigo E, Lanfranco F. Ghrelin actions on somatotropic and gonadotropic function in humans. Prog Mol Biol Transl Sci. 2016;138:3–25.

    Article  PubMed  Google Scholar 

  31. Witkamp RF. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med. 2018;64:45–67.

    Article  CAS  PubMed  Google Scholar 

  32. Mishra AK, Dubey V, Ghosh AR. Obesity: an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism. 2016;65:48–65.

    Article  CAS  PubMed  Google Scholar 

  33. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12:1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duan M, Wang Y, Zhang Q, Zou R, Guo M, Zheng H. Characteristics of gut microbiota in people with obesity. PLoS One. 2021;16:e0255446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Wouters DA, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: from the gut to the brain. Front Neurosci. 2022;16:947240.

    Article  Google Scholar 

  36. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28:1221–38.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat Rev Endocrinol. 2023;19:258–71.

    Article  PubMed  Google Scholar 

  38. Thaker VV. Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev. 2017;28:379–405.

    PubMed  PubMed Central  Google Scholar 

  39. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016;130:943–86.

    Article  CAS  PubMed  Google Scholar 

  40. Choquet H, Meyre D. Genomic insights into early-onset obesity. Genome Med. 2010;2:36.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vourdoumpa A, Paltoglou G, Charmandari E. The genetic basis of childhood obesity: a systematic review. Nutrients. 2023;15:1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler MG, Miller JL, Forster JL. Prader-Willi syndrome-clinical genetics, diagnosis and treatment approaches: an update. Curr Pediatr Rev. 2019;15:207–44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muscogiuri G, Barrea L, Faggiano F, Maiorino MI, Parrillo M, Pugliese G, et al. Obesity in Prader-Willi syndrome: physiopathological mechanisms, nutritional and pharmacological approaches. J Endocrinol Invest. 2021;44:2057–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim SJ, Cho SY, Jin DK. Prader-Willi syndrome: an update on obesity and endocrine problems. Ann Pediatr Endocrinol Metab. 2021;26:227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38:1249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iughetti L, Vivi G, Balsamo A, Corrias A, Crinò A, Delvecchio M, et al. Thyroid function in patients with Prader-Willi syndrome: an Italian multicenter study of 339 patients. J Pediatr Endocrinol Metab. 2019;32:159–65.

    Article  CAS  PubMed  Google Scholar 

  48. Noordam C, Höybye C, Eiholzer U. Prader-Willi syndrome and hypogonadism: a review article. Int J Mol Sci. 2021;22:2705.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Basak S, Basak A. Proteins and proteases of Prader-Willi syndrome: a comprehensive review and perspectives. Biosci Rep. 2022;42:BSR20220610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Napolitano L, Barone B, Morra S, Celentano G, La Rocca R, Capece M, et al. Hypogonadism in patients with Prader Willi syndrome: a narrative review. Int J Mol Sci. 2021;22:1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baldini L, Robert A, Charpentier B, Labialle S. Phylogenetic and molecular analyses identify SNORD116 targets involved in the Prader-Willi syndrome. Mol Biol Evol. 2022;39:msa348.

    Article  Google Scholar 

  52. Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, et al. Snord116 is critical in the regulation of food intake and body weight. Sci Rep. 2016;6:18614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Engle SE, Bansal R, Antonellis PJ, Berbari NF. Cilia signaling and obesity. Semin Cell Dev Biol. 2021;110:43–50.

    Article  CAS  PubMed  Google Scholar 

  54. Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl syndrome: current perspectives and clinical outlook. Ther Clin Risk Manag. 2023;19:115–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Bardet-Biedl syndrome. Adv Exp Med Biol. 2018;1085:171–4.

    Article  PubMed  Google Scholar 

  56. Weihbrecht K, Goar WA, Pak T, Garrison JE, DeLuca AP, Stone EM, et al. Keeping an eye on Bardet-Biedl syndrome: a comprehensive review of the role of Bardet-Biedl syndrome genes in the eye. Med Res Arch. 2017. https://doi.org/10.18103/mra.v5i9.1526.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhong F, Tan M, Gao Y. Novel multiallelic variants, two BBS2 and one PKD1 variant, of renal ciliopathies: a case report and literature review. Eur J Med Genet. 2023;66:104753.

    Article  CAS  PubMed  Google Scholar 

  58. Geets E, Meuwissen MEC, Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet. 2019;95:23–40.

    Article  CAS  PubMed  Google Scholar 

  59. Kang S. Adipose tissue malfunction drives metabolic dysfunction in Alström syndrome. Diabetes. 2021;70:323–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bettini S, Bombonato G, Dassie F, Favaretto F, Piffer L, Bizzotto P, et al. Liver fibrosis and steatosis in Alström syndrome: a genetic model for metabolic syndrome. Diagnostics (Basel). 2021;11:797.

    Article  CAS  PubMed  Google Scholar 

  61. Rodrigues JM, Fernandes HD, Caruthers C, Braddock SR, Knutsen AP. Cohen syndrome: review of the literature. Cureus. 2018;10:e3330.

    PubMed  PubMed Central  Google Scholar 

  62. Gong J, Zhang L, Long Y, Xiao B, Long H. Cohen syndrome in two patients from China. Mol Genet Genomic Med. 2022;10:e2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang H, Falk MJ, Wensel C, Traboulsi EI. Cohen syndrome. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2016. http://www.ncbi.nlm.nih.gov/books/NBK1482/. Accessed 5 Apr 2023.

  64. Sarathi V, Wadhwa R. Albright hereditary osteodystrophy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/books/NBK559141/. Accessed 2 Feb 2023.

  65. Ucciferro P, Anastasopoulou C. Pseudohypoparathyroidism. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK547709/. Accessed 5 Apr 2023.

  66. Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. Fragile X syndrome: clinical presentation, pathology and treatment. Gac Med Mex. 2020;156:60–6.

    PubMed  Google Scholar 

  67. Hunter J, Rivero-Arias O, Angelov A, Kim E, Fotheringham I, Leal J. Epidemiology of fragile X syndrome: a systematic review and meta-analysis. Am J Med Genet A. 2014;164A:1648–58.

    Article  PubMed  Google Scholar 

  68. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Primer. 2017;3:17065.

    Article  Google Scholar 

  69. Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: a clinical review. Int J Mol Sci. 2022;23:11005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lazea C, Sur L, Florea M. ROHHAD (rapid-onset obesity with hypoventilation, hypothalamic dysfunction, autonomic dysregulation) syndrome—what every pediatrician should know about the etiopathogenesis, diagnosis and treatment: a review. Int J Gen Med. 2021;14:319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee JM, Shin J, Kim S, Gee HY, Lee JS, Cha DH, et al. Rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neuroendocrine tumors (ROHHADNET) syndrome: a systematic review. BioMed Res Int. 2018;2018:1250721.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harvengt J, Gernay C, Mastouri M, Farhat N, Lebrethon MC, Seghaye MC, et al. ROHHAD(NET) syndrome: systematic review of the clinical timeline and recommendations for diagnosis and prognosis. J Clin Endocrinol Metab. 2020;105:dgaa247.

    Article  PubMed  Google Scholar 

  73. Bellad A, Bandari AK, Pandey A, Girimaji SC, Muthusamy B. A novel missense variant in PHF6 gene causing Börjeson-Forssman-Lehman syndrome. J Mol Neurosci. 2020;70:1403–9.

    Article  CAS  PubMed  Google Scholar 

  74. Khairat R, Elhossini R, Sobreira N, Wohler E, Otaify G, Mohamed AM, et al. Expansion of the phenotypic and mutational spectrum of Carpenter syndrome. Eur J Med Genet. 2022;65:104377.

    Article  CAS  PubMed  Google Scholar 

  75. Cascella M, Muzio MR. Cornelia de Lange syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK554584/. Accessed 5 Apr 2023.

  76. Milani D, Manzoni FMP, Pezzani L, Ajmone P, Gervasini C, Menni F, et al. Rubinstein-Taybi syndrome: clinical features, genetic basis, diagnosis, and management. Ital J Pediatr. 2015;41:4.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nordang GBN, Busk ØL, Tveten K, Hanevik HI, Fell AKM, Hjelmesæth J, et al. Next-generation sequencing of the monogenic obesity genes LEP, LEPR, MC4R, PCSK1 and POMC in a Norwegian cohort of patients with morbid obesity and normal weight controls. Mol Genet Metab. 2017;121:51–6.

    Article  CAS  PubMed  Google Scholar 

  78. Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem Genet. 2016;54:565–72.

    Article  CAS  PubMed  Google Scholar 

  79. Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin functions in infectious diseases. Front Immunol. 2018;9:2741.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes. 2019;12:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kleinendorst L, Abawi O, van der Kamp HJ, Alders M, Meijers-Heijboer HEJ, van Rossum EFC, et al. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur J Endocrinol. 2020;182:47–56.

    Article  CAS  PubMed  Google Scholar 

  82. Huvenne H, Dubern B, Clément K, Poitou C. Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts. 2016;9:158–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Doulla M, McIntyre AD, Hegele RA, Gallego PH. A novel MC4R mutation associated with childhood-onset obesity: a case report. Paediatr Child Health. 2014;19:515–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Aykut A, Özen S, Gökşen D, Ata A, Onay H, Atik T, et al. Melanocortin 4 receptor (MC4R) gene variants in children and adolescents having familial early-onset obesity: genetic and clinical characteristics. Eur J Pediatr. 2020;179:1445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity—assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102:709–57.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gregoric N, Groselj U, Bratina N, Debeljak M, Zerjav Tansek M, Suput Omladic J, et al. Two cases with an early presented proopiomelanocortin deficiency—a long-term follow-up and systematic literature review. Front Endocrinol (Lausanne). 2021;12:689387.

    Article  PubMed  Google Scholar 

  87. van der Valk ES, Kleinendorst L, Delhanty PJD, van der Voorn B, Visser JA, van Haelst MM, et al. Obesity and hyperphagia with increased defective ACTH: a novel POMC variant. J Clin Endocrinol Metab. 2022;107:e3699–704.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Farooqi IS, Drop S, Clements A, Keogh JM, Biernacka J, Lowenbein S, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes. 2006;55:2549–53.

    Article  CAS  PubMed  Google Scholar 

  89. Ramos-Molina B, Martin MG, Lindberg I. PCSK1 variants and human obesity. Prog Mol Biol Transl Sci. 2016;140:47–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramos-Molina B, Lindberg I, Peinado JR. Regulated proteolysis of signaling molecules: the proprotein convertases. In: Bradshaw RA, Stahl PD, editors. Encyclopedia of cell biology. Waltham: Academic Press; 2016. p. 555–567. https://www.sciencedirect.com/science/article/pii/B9780123944474100677. Accessed 30 Jan 2023.

  91. Aerts L, Terry NA, Sainath NN, Torres C, Martín MG, Ramos-Molina B, et al. Novel homozygous inactivating mutation in the PCSK1 gene in an infant with congenital malabsorptive diarrhea. Genes (Basel). 2021;12:710.

    Article  CAS  PubMed  Google Scholar 

  92. Stijnen P, Ramos-Molina B, O’Rahilly S, Creemers JWM. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr Rev. 2016;37:347–71.

    Article  CAS  PubMed  Google Scholar 

  93. Stijnen P, Tuand K, Varga TV, Franks PW, Aertgeerts B, Creemers JWM. The association of common variants in PCSK1 with obesity: a HuGE review and meta-analysis. Am J Epidemiol. 2014;180:1051–65.

    Article  PubMed  Google Scholar 

  94. da Fonseca ACP, Abreu GM, Palhinha L, Zembrzuski VM, Campos Junior M, Carneiro JRI, et al. A rare potential pathogenic variant in the BDNF gene is found in a Brazilian patient with severe childhood-onset obesity. Diabetes Metab Syndr Obes. 2021;14:11–22.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis. Int J Mol Sci. 2018;19:2281.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359:918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lindberg I, Fricker LD. Obesity, POMC, and POMC-processing enzymes: surprising results from animal models. Endocrinology. 2021;162:bqab155.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vivoli M, Lindberg I. Chapter 246-Prohormone convertase 2. In: Kastin AJ, editor. Handbook of biologically active peptides (second edition). Boston: Academic Press; 2013. p. 1797–1802. https://www.sciencedirect.com/science/article/pii/B9780123850959002463. Accessed 30 Jan 2023.

  99. Littleton SH, Berkowitz RI, Grant SFA. Genetic determinants of childhood obesity. Mol Diagn Ther. 2020;24:653–63.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pinto RM, Steinmetz LS, Barbosa JMG, Mendes AFCS, Curado MP, da Cruz AD. The role of genetics in the pathophysiology of obesity: a systematic review. Obes Res. 2019;6:11–7.

    Google Scholar 

  101. Hinney A, Giuranna J. Polygenic obesity. In: Freemark MS, editor. Pediatric obesity: etiology, pathogenesis and treatment. Cham: Springer International Publishing; 2018. p. 183–202. https://doi.org/10.1007/978-3-319-68192-4_10.

    Chapter  Google Scholar 

  102. Prakash J, Mittal B, Srivastava A, Awasthi S, Srivastava P, Srivastava N. Common genetic variant of INSIG2 gene rs7566605 polymorphism is associated with severe obesity in North India. Iran Biomed J. 2017;21:261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Malzahn D, Müller-Nurasyid M, Heid IM, Wichmann HE, Bickeböller H, KORA study group. Controversial association results for INSIG2 on body mass index may be explained by interactions with age and with MC4R. Eur J Hum Genet. 2014;22:1217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harbron J, Van der Merwe L, Zaahl MG, Kotze MJ, Senekal M. Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients. 2014;6:3130–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hess ME, Brüning JC. The fat mass and obesity-associated (FTO) gene: obesity and beyond? Biochim Biophys Acta. 2014;1842:2039–47.

    Article  CAS  PubMed  Google Scholar 

  106. Loos RJF. Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab. 2012;26:211–26.

    Article  CAS  PubMed  Google Scholar 

  107. Melmed S, Koenig R, Rosen C, Auchus R, Goldfine A. Williams textbook of endocrinology. 14th ed. Amsterdam: Elsevier Health Sciences; 2019.

    Google Scholar 

  108. Arroyo-Johnson C, Mincey KD. Obesity epidemiology worldwide. Gastroenterol Clin North Am. 2016;45:571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet. 2013;21:8–13.

    Article  CAS  PubMed  Google Scholar 

  110. Gunay-Aygun M, Schwartz S, Heeger S, O’Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001;108:E92.

    Article  CAS  PubMed  Google Scholar 

  111. Dai YL, Luo FH, Zhang HW, Ma MS, Luo XP, Liu L, et al. Recommendations for the diagnosis and management of childhood Prader-Willi syndrome in China. Orphanet J Rare Dis. 2022;17:221.

    Article  Google Scholar 

  112. Priya S, Nampoothiri S, Sen P, Sripriya S. Bardet-Biedl syndrome: genetics, molecular pathophysiology, and disease management. Indian J Ophthalmol. 2016;64:620–7.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Butler MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics. 2011;12:204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koves IH, Roth C. Genetic and syndromic causes of obesity and its management. Indian J Pediatr. 2018;85:478–85.

    Article  PubMed  Google Scholar 

  115. Larder R, Lim CT, Coll AP. Genetic aspects of human obesity. Handb Clin Neurol. 2014;124:93–106.

    Article  PubMed  Google Scholar 

  116. Alves C, Franco RR. Prader-Willi syndrome: endocrine manifestations and management. Arch Endocrinol Metab. 2020;64:223–34.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader-Willi syndrome: current perspectives. Diabetes Metab Syndr Obes. 2018;11:579–93.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yang Q, Xiao T, Guo J, Su Z. Complex relationship between obesity and the fat mass and obesity locus. Int J Biol Sci. 2017;13:615–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sehgal K, Khanna S. Gut microbiota: a target for intervention in obesity. Expert Rev Gastroenterol Hepatol. 2021;15:1169–79.

    Article  CAS  PubMed  Google Scholar 

  120. Santos-Paulo S, Costello SP, Forster SC, Travis SP, Bryant RV. The gut microbiota as a therapeutic target for obesity: a scoping review. Nutr Res Rev. 2022;35:207–20.

    Article  PubMed  Google Scholar 

  121. Gill VJS, Soni S, Shringarpure M, Anusheel, Bhardwaj S, Yadav NK, et al. Gut microbiota interventions for the management of obesity: a literature review. Cureus. 2022;14:e29317.

    PubMed  PubMed Central  Google Scholar 

  122. Diene G, Angulo M, Hale PM, Jepsen CH, Hofman PL, Hokken-Koelega A, et al. Liraglutide for weight management in children and adolescents with Prader-Willi syndrome and obesity. J Clin Endocrinol Metab. 2022;108:4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Haqq AM, Chung WK, Dollfus H, Haws RM, Martos-Moreno GÁ, Poitou C, et al. Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol. 2022;10:859–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mahmoud R, Kimonis V, Butler MG. Clinical trials in Prader-Willi syndrome: a review. Int J Mol Sci. 2023;24:2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salum KCR, Rolando JM, Zembrzuski VM, Carneiro JRI, Mello CB, Maya-Monteiro CM, et al. When leptin is not there: a review of what nonsyndromic monogenic obesity cases tell us and the benefits of exogenous leptin. Front Endocrinol (Lausanne). 2021;12:722441.

    Article  PubMed  Google Scholar 

  126. Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. 2023;58:101882.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, et al. A national multicenter study of leptin (LEP) and leptin receptor (LEPR) deficiency and systematic review. J Clin Endocrinol Metab. 2023. https://doi.org/10.1210/clinem/dgad099.

    Article  PubMed  Google Scholar 

  128. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Niu J, Tong J, Blevins JE. Oxytocin as an anti-obesity treatment. Front Neurosci. 2021;15:743546.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Liu CM, Spaulding MO, Rea JJ, Noble EE, Kanoski SE. Oxytocin and food intake control: neural, behavioral, and signaling mechanisms. Int J Mol Sci. 2021;22:10859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taha MA, Al-Maqati TN, Alnaam YA, Alharbi SS, Khaneen R, Almutairi H, et al. The association between brain-derived neurotrophic factor (BDNF) protein level and body mass index. Medicina (Kaunas). 2022;59:99.

    Article  PubMed  Google Scholar 

  132. Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, et al. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev. 2022;145:105015.

    Article  PubMed  Google Scholar 

  133. Wu SW, Xu B. Rapid and lasting effects of activating BDNF-expressing PVH neurons on energy balance. eNeuro. 2022;9:ENEURO.0009-22.2022.

    Article  PubMed  Google Scholar 

  134. Bumb JM, Bach P, Grosshans M, Wagner X, Koopmann A, Vollstädt-Klein S, et al. BDNF influences neural cue-reactivity to food stimuli and food craving in obesity. Eur Arch Psychiatry Clin Neurosci. 2021;271:963–74.

    Article  PubMed  Google Scholar 

  135. Matheson J, Zhou XMM, Bourgault Z, Le Foll B. Potential of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL) enzymes as targets for obesity treatment: a narrative review. Pharmaceuticals (Basel). 2021;14:1316.

    Article  CAS  PubMed  Google Scholar 

  136. André A, Gonthier MP. The endocannabinoid system: its roles in energy balance and potential as a target for obesity treatment. Int J Biochem Cell Biol. 2010;42:1788–801.

    Article  PubMed  Google Scholar 

  137. Jastreboff AM, Kaplan LM, Frías JP, Wu Q, Du Y, Gurbuz S, et al. Triple–hormone-receptor agonist retatrutide for obesity—a phase 2 trial. N Engl J Med. 2023. https://doi.org/10.1056/NEJMoa2301972.

    Article  PubMed  Google Scholar 

  138. Thenappan A, Nadler E. Bariatric surgery in children: indications, types, and outcomes. Curr Gastroenterol Rep. 2019;21:24.

    Article  PubMed  Google Scholar 

  139. Hofmann B. Bariatric surgery for obese children and adolescents: a review of the moral challenges. BMC Med Ethics. 2013;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92:251–65.

    Article  PubMed  Google Scholar 

  141. Bolling CF, Armstrong SC, Reichard KW, Michalsky MP. Metabolic and bariatric surgery for pediatric patients with severe obesity. Pediatrics. 2019;144:e20193224.

    Article  PubMed  Google Scholar 

  142. Gonzalez DO, Michalsky MP. Update on pediatric metabolic and bariatric surgery. Pediatr Obes. 2021;16:e12794.

    Article  PubMed  Google Scholar 

  143. Holéczy P, Pekař M, Bužga M, Evinová E. Current bariatric-metabolic surgery. Cas Lek Cesk. 2022;161:100–6.

    PubMed  Google Scholar 

  144. Steinhart A, Tsao D, Pratt JSA. Pediatric metabolic and bariatric surgery. Surg Clin North Am. 2021;101:199–212.

    Article  PubMed  Google Scholar 

  145. Thomas-Eapen N. Childhood obesity. Prim Care. 2021;48:505–15.

    Article  PubMed  Google Scholar 

  146. Alqahtani AR, Elahmedi M, Alqahtani YA. Bariatric surgery in monogenic and syndromic forms of obesity. Semin Pediatr Surg. 2014;23:37–42.

    Article  PubMed  Google Scholar 

  147. Armstrong SC, Bolling CF, Michalsky MP, Reichard KW. Pediatric metabolic and bariatric surgery: evidence, barriers, and best practices. Pediatrics. 2019;144:e20193223.

    Article  PubMed  Google Scholar 

  148. Greydanus DE, Agana M, Kamboj MK, Shebrain S, Soares N, Eke R, et al. Pediatric obesity: current concepts. Dis Month. 2018;64:98–156.

    Article  Google Scholar 

  149. Poitou C, Puder L, Dubern B, Krabusch P, Genser L, Wiegand S, et al. Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surg Obes Relat Dis. 2021;17:1449–56.

    Article  PubMed  Google Scholar 

  150. Satoh H, Mori S. Subregional assignment of the proopiomelanocortin gene (POMC) to human chromosome band 2p23.3 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1997;76:221–2.

    Article  CAS  PubMed  Google Scholar 

  151. Wolfe G, Salehi V, Browne A, Riddle R, Hall E, Fam J, et al. Metabolic and bariatric surgery for obesity in Prader Willi syndrome: systematic review and meta-analysis. Surg Obes Relat Dis. 2023. https://doi.org/10.1016/j.soard.2023.01.017.

    Article  PubMed  Google Scholar 

  152. Roth L, Ordnung M, Forkmann K, Mehl N, Horstmann A. A randomized-controlled trial to evaluate the app-based multimodal weight loss program zanadio for patients with obesity. Obesity (Silver Spring). 2023;31:1300–10.

    Article  PubMed  Google Scholar 

  153. Ibrahim Abdalla MM. Ghrelin–physiological functions and regulation. Eur Endocrinol. 2015;11:90–5.

    PubMed  PubMed Central  Google Scholar 

  154. Fong AKW, Wong SKH, Lam CCH, Ng EKW. Ghrelin level and weight loss after laparoscopic sleeve gastrectomy and gastric mini-bypass for Prader-Willi syndrome in Chinese. Obes Surg. 2012;22:1742–5.

    Article  PubMed  Google Scholar 

  155. Gantz MG, Driscoll DJ, Miller JL, Duis JB, Butler MG, Gourash L, et al. Critical review of bariatric surgical outcomes in patients with Prader-Willi syndrome and other hyperphagic disorders. Obesity (Silver Spring). 2022;30:973–81.

    Article  PubMed  Google Scholar 

  156. Liu SYW, Wong SKH, Lam CCH, Ng EKW. Bariatric surgery for Prader-Willi syndrome was ineffective in producing sustainable weight loss: long term results for up to 10 years. Pediatr Obes. 2020;15:e12575.

    Article  PubMed  Google Scholar 

  157. Pratt JSA, Browne A, Browne NT, Bruzoni M, Cohen M, Desai A, et al. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg Obes Relat Dis. 2018;14:882–901.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cooiman MI, Kleinendorst L, Aarts EO, Janssen IMC, van Amstel HKP, Blakemore AI, et al. Genetic obesity and bariatric surgery outcome in 1014 patients with morbid obesity. Obes Surg. 2020;30:470–7.

    Article  CAS  PubMed  Google Scholar 

  159. Cifuentes L, Hurtado AMD, Eckel-Passow J, Acosta A. Precision medicine for obesity. Dig Dis Interv. 2021;5:239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Campbell Am LV. Genetics of obesity. Aust Fam Physician. 2017;46:456–9.

    PubMed  Google Scholar 

  161. Rohde K, Keller M, la Cour PL, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism. 2019;92:37–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CZMJ contributed to conceptualization, methodology, reviewing and editing, and project administration. QAJE contributed to conceptualization, methodology, investigation, writing of the original draft, and project administration. DVMdC, VdlCJdC, BCCM, and PLSL contributed to investigation and writing of the original draft. GOER contributed to investigation, reviewing and editing. ALEdJ, LCF, ZGFE, and CULA contributed to reviewing and editing. PIJ contributed to conceptualization, methodology, reviewing and editing. All authors approve the final version of the manuscript.

Corresponding author

Correspondence to Marcio José Concepción-Zavaleta.

Ethics declarations

Ethical approval

Not needed.

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article. The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concepción-Zavaleta, M.J., Quiroz-Aldave, J.E., Durand-Vásquez, M.d. et al. A comprehensive review of genetic causes of obesity. World J Pediatr 20, 26–39 (2024). https://doi.org/10.1007/s12519-023-00757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-023-00757-z

Keywords

Navigation