Skip to main content
Log in

Rapid chemosensitivity assay with human normal and tumor cells in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Neutral red assay, as an index of cytotoxicity, has been applied to predictive screening of chemotherapeutic agents. Human hepatoma and melanoma tumor cells and normal melanocytes, keratinocytes and fibroblasts were incubated for 2, 24, and 48 h with graded concentrations of cis-platinum (0.1 to 80 μM), doxorubicin (0.01 to 100 μM), and 5-fluorouracil (1 to 1000 μM). Cells were most sensitive after 48 h. Tumor cells, based on 50% toxicity values, were 2–4 times more sensitive than the normal cells, except for cis-platinum, where only melanoma cells, as compared to normal melanocytes, showed a marked difference in cytotoxic response. Methotrexate (1 to 10 μM) toxicity could be reversed in the presence of 100 μM of leucovorin. This sensitive, rapid, and economical assay is suitable for preclinical screening and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babich, H.; Borenfreund, E. Structure-activity relationship (SAR) models establishedin vitro with the neutral red cytotoxicity assay. Toxicol. In Vitro 1:3–9; 1987.

    Article  CAS  PubMed  Google Scholar 

  2. Babich, H.; Borenfreund, E. In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ. Res. 42:229–237; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Babich, H.; Borenfreund, E. Structure-activity relationships for diorganotins, chlorinated benzenes and chlorinated anilines established with bluegill sunfish BF-2 cells. Fund. Appl. Toxicol. 10:295–301; 1988.

    Article  CAS  Google Scholar 

  4. Babich, H.; Martin-Alguacil, N.; Borenfreund, E. Mediating role of metabolic activation inin vitro cytotoxicity assays. Mol. Toxicol. 1:363–372; 1987/88.

    CAS  Google Scholar 

  5. Babich, H.; Martin-Alguacil, N.; Borenfreund, E. Comparison of the cytotoxicities of dermatotoxicants to human keratinocytes and fibroblastsin vitro. In: Goldberg, A. M., ed. Alternative methods in toxicology, vol. 7. New York: Mary Liebert Inc., Publ.; 1989:153–167.

    Google Scholar 

  6. Babich, H.; Sardana, M. K.; Borenfreund, E. Acute cytotoxicities of polynuclear aromatic hydrocarbons determinedin vitro with human liver tumor cell line HepG2. Cell Biol. Toxicol. 4:295–300; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Bertino, J. R. “Rescue” techniques in cancer chemotherapy: use of leucovorin and other rescue agents after methotrexate treatment. Semin. Oncol. 4:203–216; 1977.

    PubMed  CAS  Google Scholar 

  8. Bleyer, W. A. New vistas for leucovorin in cancer chemotherapy. Cancer 63:995–1007; 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Borenfreund, E.; Puerner, J. A. Toxicity determinedin vitro by morphological alterations and neutral red adsorption. Toxicol. Lett. 24:119–124; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Borenfreund, E.; Puerner, J. A. Cytotoxicity of metals, metalmetal and metal-chelator combinations assayedin vitro. Toxicology 39:121–134; 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Borenfreund, E.; Babich, H.In vitro cytotoxicity of heavy metals, acetylamide and organotin salts to neural cells and fibroblasts. Cell Biol. Toxicol. 3:63–73; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Borenfreund, E.; Puerner, J. A. Short term quantitativein vitro cytotoxicity assay involving an S-9 activating system. Cancer Lett. 34:243–248; 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Carter, S. K. Adriamycin. A review. JNCI 55:1265–1274; 1975.

    PubMed  CAS  Google Scholar 

  14. Hamburger, A. W.; Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197:461–463; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Mossman, T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immun. Methods 65:55–63; 1983.

    Article  Google Scholar 

  16. Pinto, A. L.; Lippard, S. J. Sequence dependent termination ofin vitro DNA synthesis by cis- and trans-diamminedichloroplatinum (II). Proc. Natl. Acad. Sci. USA 82:4616–4619; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Ross, D. D.; Joneckis, C. C.; Ordonez, J. V., et al. Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res. 49:3776–3782; 1989.

    PubMed  CAS  Google Scholar 

  18. Salmon, S. E.; Hamburger, A. W.; Soehnlen, B., et al. Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N. Engl. J. Med. 298:1321–1327; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Shilsky, R. L.; Yarbro, J. W. Pharmacology of antineoplastic drugs. In: Perry, M. C.; Yarbro, J. W., eds. Toxicity of chemotherapy, New York Grune & Stratton Inc.; 1984:21–59.

    Google Scholar 

  20. Sorenson, C. M.; Eastman, A. Mechanism of cisdiamminedichloroplatinum (II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res. 48:4484–4488; 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported, in part, by funds from Schering Corporation, New Jersey, and Chevron Environmental Health Center, Inc., California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borenfreund, E., Babich, H. & Martin-Alguacil, N. Rapid chemosensitivity assay with human normal and tumor cells in vitro. In Vitro Cell Dev Biol 26, 1030–1034 (1990). https://doi.org/10.1007/BF02624436

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624436

Key words

Navigation