Skip to main content

In Vitro Cytotoxicity Analysis: MTT/XTT, Trypan Blue Exclusion

  • Chapter
  • First Online:
Animal Cell Culture: Principles and Practice

Abstract

In vitro cytotoxicity analyses have played a major role in the current drug discovery processes. These analyses enable the measurement of target cell death, growth, reproduction and morphological changes before and after the treatment with cytotoxic compounds. The cytotoxicity tests. Indeed, testing a drug-like compound directly in human or animal models is way more expensive and time-consuming. Therefore, in vitro cytotoxic tests on the primary or secondary cell cultures are a simpler, faster and highly sensitive technique that can save time as well as the sacrifices of animal models upon the failure of the experiment. Different categories of in vitro cytotoxic and cell viability assays include the dye exclusion methods, colorimetric assay, fluorometric assays and luminometric assay. However, the most common types of in vitro cytotoxic assays measure the number of remaining viable cells majorly via assaying the activity of mitochondrial enzymes with tetrazolium salts. In this chapter, we discuss the different in vitro cytotoxic assay methods for analysing the degree of damaged, dead or viable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman, F. P. (1976). Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry, 9(3), III-51.

    Article  Google Scholar 

  • Aslantürk, O. S., & Çelik, T. A. (2013a). Antioxidant, cytotoxic and apoptotic activities of extracts from medicinal plant Euphorbia platyphyllos L. Journal of Medicinal Plants Research, 7(19), 1293–1304.

    Google Scholar 

  • Aslantürk, Ö. S., & Çelik, T. A. (2013b). Potential antioxidant activity and anticancer effect of extracts from Dracunculus vulgaris Schott. Tubers on MCF-7 breast cancer cells. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(2), 394–402.

    Google Scholar 

  • Aslantürk, O. S., & Çelik, T. A. (2013c). Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers of Asphodelus aestivus Brot. African Journal of Pharmacy and Pharmacology, 7(11), 610–621.

    Article  Google Scholar 

  • Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127–152.

    Article  CAS  Google Scholar 

  • Bhuyan, B. K., Loughman, B., Fraser, T. J., & Day, K. J. (1976). Comparison of different methods of determining cell viability after exposure to cytotoxic compounds. Experimental Cell Research, 97(2), 275–280.

    Article  CAS  Google Scholar 

  • Chrzanowska, C., Hunt, S. M., Mohammed, R., & Tilling, P. J. (1990). The use of cytotoxicity assays for the assessment of toxicity. In EHT 9329, final report to the Department of the Environment.

    Google Scholar 

  • Decker, T., & Lohmann-Matthes, M. L. (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115(1), 61–69.

    Article  CAS  Google Scholar 

  • Duellman, S. J., Zhou, W., Meisenheimer, P., Vidugiris, G., Cali, J. J., Gautam, P., Wennerberg, K., & Vidugiriene, J. (2015). Bioluminescent, nonlytic, real-time cell viability assay and use in inhibitor screening. Assay and Drug Development Technologies, 13(8), 456–465.

    Article  CAS  Google Scholar 

  • Eisenbrand, G., Pool-Zobel, B., Baker, V., Balls, M., Blaauboer, B. J., Boobis, A., Carere, A., Kevekordes, S., Lhuguenot, J. C., Pieters, R., & Kleiner, J. (2002). Methods of in vitro toxicology. Food and Chemical Toxicology, 40(2–3), 193–236.

    Article  CAS  Google Scholar 

  • Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160(2), 171–177.

    Article  CAS  Google Scholar 

  • Ishiyama, M., Tominaga, H., Shiga, M., Sasamoto, K., Ohkura, Y., & Ueno, K. (1996). A combined assay of cell vability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biological & Pharmaceutical Bulletin, 19(11), 1518–1520.

    Article  CAS  Google Scholar 

  • Kim, S. I., Kim, H. J., Lee, H. J., Lee, K., Hong, D., Lim, H., Cho, K., Jung, N., & Yi, Y. W. (2016). Application of a non-hazardous vital dye for cell counting with automated cell counters. Analytical Biochemistry, 492, 8–12.

    Article  CAS  Google Scholar 

  • Krause, A. W., Carley, W. W., & Webb, W. W. (1984). Fluorescent erythrosin B is preferable to trypan blue as a vital exclusion dye for mammalian cells in monolayer culture. The Journal of Histochemistry and Cytochemistry, 32(10), 1084–1090.

    Article  CAS  Google Scholar 

  • Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harbor Protocols, 2018(6), pdb-prot095497.

    Article  Google Scholar 

  • Kumarasuriyar A (2007) Cytotoxicity detection kit (LDH) from Roche applied science

    Google Scholar 

  • Lappalainen, K., Jääskeläinen, I., Syrjänen, K., Urtti, A., & Syrjänen, S. (1994). Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharmaceutical Research, 11(8), 1127–1131.

    Article  CAS  Google Scholar 

  • Lee, J. C., Lee, K. Y., Son, Y. O., Choi, K. C., Kim, J., Truong, T. T., & Jang, Y. S. (2005). Plant-originated glycoprotein, G-120, inhibits the growth of MCF-7 cells and induces their apoptosis. Food and Chemical Toxicology, 43(6), 961–968.

    Article  CAS  Google Scholar 

  • Mosmann, T. (1983). Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  CAS  Google Scholar 

  • Mueller, H., Kassack, M. U., & Wiese, M. (2004). Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. Journal of Biomolecular Screening, 9(6), 506–515.

    Article  CAS  Google Scholar 

  • Niles, A. L., Moravec, R. A., & Riss, T. L. (2009). In vitro viability and cytotoxicity testing and same-well multi-parametric combinations for high throughput screening. Current Chemical Genomics, 3, 33.

    Article  CAS  Google Scholar 

  • O’brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426.

    Article  Google Scholar 

  • Page, B., Page, M., & Noel, C. (1993). A new fluorometric assay for cytotoxicity measurements in-vitro. International Journal of Oncology, 3(3), 473–476.

    CAS  Google Scholar 

  • Präbst, K., Engelhardt, H., Ringgeler, S. and Hübner, H., (2017). Basic colourimetric proliferation assays: MTT, WST, and resazurin. In Cell viability assays (pp. 1–17). Humana Press.

    Google Scholar 

  • Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., & Minor, L. (2016). Cell viability assays. Assay Guidance Manual [Internet].

    Google Scholar 

  • Roehm, N. W., Rodgers, G. H., Hatfield, S. M., & Glasebrook, A. L. (1991). An improved colourimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. Journal of Immunological Methods, 142(2), 257–265.

    Article  CAS  Google Scholar 

  • Ruben, R. L. (1988). Cell culture for testing anticancer compounds. In advances in cell culture (Vol. 6, pp. 161–197). Elsevier.

    Google Scholar 

  • Schins, R. P., Duffin, R., Höhr, D., Knaapen, A. M., Shi, T., Weishaupt, C., Stone, V., Donaldson, K., & Borm, P. J. (2002). Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chemical Research in Toxicology, 15(9), 1166–1173.

    Article  CAS  Google Scholar 

  • Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D., & Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research, 48(17), 4827–4833.

    CAS  Google Scholar 

  • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colourimetric cytotoxicity assay for anticancer-drug screening. JNCI: Journal of the National Cancer Institute, 82(13), 1107–1112.

    Article  CAS  Google Scholar 

  • Sliwka, L., Wiktorska, K., Suchocki, P., Milczarek, M., et al. (2016). The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One, 11(5), e0155722.

    Article  Google Scholar 

  • Son, Y. O., Kim, J., Lim, J. C., Chung, Y., Chung, G. H., & Lee, J. C. (2003). Ripe fruits of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food and Chemical Toxicology, 41(10), 1421–1428.

    Article  CAS  Google Scholar 

  • Stone, V., Johnston, H., & Schins, R. P. (2009). Development of in vitro systems for nanotoxicology: Methodological considerations. Critical Reviews in Toxicology, 39(7), 613–626.

    Article  CAS  Google Scholar 

  • Strober, W. (2015). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 111(1), A3-B.

    Article  Google Scholar 

  • Weisenthal, L. M., Dill, P. L., Kurnick, N. B., & Lippman, M. E. (1983). Comparison of dye exclusion assays with a clonogenic assay in the determination of drug-induced cytotoxicity. Cancer Research, 43(1), 258–264.

    CAS  Google Scholar 

  • Yip, D. K., & Auersperg, N. (1972). The dye-exclusion test for cell viability: Persistence of differential staining following fixation. In Vitro, 7(6), 323–329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mani, S., Swargiary, G. (2023). In Vitro Cytotoxicity Analysis: MTT/XTT, Trypan Blue Exclusion. In: Animal Cell Culture: Principles and Practice. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-031-19485-6_18

Download citation

Publish with us

Policies and ethics