Skip to main content
Log in

Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Deciduous forests are seasonal systems that occur scattered throughout the Neotropics. Many aspects about these ecosystems have been studied. However, there is a lack of information about leaf structure and its possible functional and adaptive aspects. Here we examined leaf anatomy and specific leaf area (SLA) in 13 dominant tree species of dry forests in central Brazil, identifying structural patterns of these species. As the system is seasonal, with species presenting a deciduous behavior, we expect to find tree species with a set of mesomorphic leaf traits. The studied dry forest trees share similar leaf structure, with one-layered adaxial and abaxial epidermis and a well-developed mesophyll, high values of SLA, and the presence of calcium crystals and mucilaginous cells. Higher values of SLA and the high investment achieved in the mesophyll (especially in parenchyma tissue) are probably related to the accomplishment of a high performance of carbon and nutrients gain during the limited wet season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–10
Figs. 11–15
Figs. 16–23
Figs. 24–41
Figs. 42–53
Figs. 54–58

Similar content being viewed by others

References

  • Andrade-Lima D (1981) The caatinga dominium. Rev Bras Bot 4:149–153

    Google Scholar 

  • Caldas LS, Bravo C, Piccolo H, Faria CRSM (1992) Measurement of leaf area with a hand-scanner linked to a microcomputer. Rev Bras Fisiol Veg 4:17–20

    Google Scholar 

  • Carvalho FA, Felfili JM (2011) Variações temporais na comunidade arbórea de uma floresta decidual sobre afloramentos calcários no Brasil Central: composição, estrutura e diversidade florística. Acta Bot Bras 25:203–214

    Article  Google Scholar 

  • Chapotin SM, Holbrook NM, Morse R, Gutierrez MV (2003) Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysaccharides. Plant Cell Environ 26:623–630

    Article  CAS  Google Scholar 

  • Clifford SC, Arndt SK, Popp M, Jones HG (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. J Exp Bot 53:131–138

    Article  CAS  PubMed  Google Scholar 

  • Coelho MS, Fernandes GW, Sanchez-Azofeifa GQ (2013) Brazilian tropical dry forest on basalt and limestone outcrops: status of knowledge and perspectives. In: Sanchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, Boca Raton, pp 55–68

    Chapter  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defences in tropical forest. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Crawley MJ (1997) Plant ecology. Blackwell Science, Oxford

    Google Scholar 

  • Dickinson WG (2000) Integrative plant anatomy. Academic Press, San Diego

    Google Scholar 

  • Dirzo R, Boege K (2008) Patterns of herbivory and defense in tropical dry and rain forests. In: Walter C, Schnitzer S (eds) Tropical forest community ecology. Chichester, Wiley-Blackwell, pp 63–78

    Google Scholar 

  • Ehleringer JR, Björkmann O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 37:183–200

    Article  Google Scholar 

  • Evans J, Loreto F (2004) Acquisition and diffusion of CO2 in higher plant leaves. Adv Photo Respir 9:321–351

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy. Meristems, cells, and tissues of the plant body—their structure, function and development. Wiley, Hoboken

    Book  Google Scholar 

  • Fahn A (1986) Structural and functional properties of trichomes of xeromorphic leaves. Ann Bot 57:631–637

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Felfili JM (2001) As principais fisionomias do Espigão Mestre do São Francisco. In: Felfili JM, Jr. Silva MC (eds) Biogeografia do bioma cerrado: estudo fitofisionômico da Chapada do Espigão Mestre do São Francisco. Universidade de Brasília, Brasília, pp 18–30

    Google Scholar 

  • Felfili JM, Nascimento ART, Fagg CW, Meirelles EM (2007) Floristic composition and community structure of a seasonally deciduous forest on limestone outcrops in Central Brazil. Rev Bras Bot 30:611–621

    Article  Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defenses in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187

    Article  Google Scholar 

  • Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabe M (1968) Techniques histologiques. Masson and Cie, Paris

    Google Scholar 

  • Ghanem ME, Han R-M, Classen B, Quetin-Leclerq A, Mahy G, Ruan C-J, Qin P, Pérez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Goldstein G, Andrade JL, Nobel PS (1991) Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. Aust J Plant Physiol 18:5–107

    Article  Google Scholar 

  • Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20:549–558

    Article  Google Scholar 

  • Hikosaka K (2005) Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann Bot 95:521–533

    Article  CAS  PubMed  Google Scholar 

  • Hulshof CM, Martínez-Yrízar A, Burquez A, Boyle B, Enquist BJ (2013) Plant functional trait variation in tropical dry forests: a review and synthesis. In: Sanchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, Boca Raton, pp 129–140

    Chapter  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. Macgraw-Hill Book Company, New York

    Google Scholar 

  • Kitajima K, Mulkey SS, Wright SJ (1997) Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. Am J Bot 84:702–708

    Article  CAS  PubMed  Google Scholar 

  • Klich MG (2000) Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Env Exp Bot 44:171–183

    Article  Google Scholar 

  • Kostman TA, Franceschi VR (2000) Cell and calcium oxalate crystal growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma 214:166–179

    Article  CAS  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. Editora da Universidade Federal Rural do Rio de Janeiro, Seropedica

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, New York

    Book  Google Scholar 

  • Lee DW (2009) Plant tissue optics: micro- and nanostructures. Biomim Bioinspir 7401:740104

    Article  Google Scholar 

  • Marenco RA, Vieira G (2005) Specific leaf area and photosynthetic parameters of tree species in the forest understory as a function of the microsite light environment in Central Amazonia. J Trop For Sci 17:265–278

    Google Scholar 

  • Marquis RJ, Morais HC, Diniz IR (2002) Interactions among cerrado plants and their herbivores: unique or typical? In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 306–328

    Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Metcalfe CH, Chalk L (1979) Anatomy of the dicotyledons: volume 1 systematic anatomy of leaf and stem. Oxford University Press, Oxford

    Google Scholar 

  • Mooney HA, Bullock SH, Medina E (1995) Introduction. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 1–8

    Chapter  Google Scholar 

  • Mott KA, Michaelson O (1991) Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae). Am J Bot 78:76–79

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Neves FS, Araújo LS, Espírito-Santo MM, Fagundes M, Fernandes GW, Sanchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest–savanna transition in Brazil. Biotropica 42:112–118

    Article  Google Scholar 

  • Oliveira Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Pennington RT, Lewis GP, Ratter JA (2006) An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In: Pennington RT, Lweis GP, Ratter JA (eds) Neotropical savannas and dry forests: diversity, biogeography and conservation. The Systematics Association Special Volume Series 69. CRC Press, London, pp 1–29

    Chapter  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho AT (2009) Woody plant diversity, evolution and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol S 40:427–457

    Google Scholar 

  • Poorter L (2002) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Porembski S (2007) Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Rev Bras Bot 30:579–586

    Article  Google Scholar 

  • Pringle EG, Adams RI, Broadbent E, Busby PE, Donatti CI, Kurten EL, Renton K, Dirzo R (2010) Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica 43:299–308

    Article  Google Scholar 

  • Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematic. Ann Bot 84:725–739

    Article  CAS  Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyu J, Westoby M, Walter MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. J Veg Sci 164:143–164

    Google Scholar 

  • Rodal MJN, Barbosa MRV, Thomas WW (2008) Do the seasonal forests in northeastern Brazil represent a single floristic unit? Braz J Biol 68:467–475

    Article  CAS  PubMed  Google Scholar 

  • Rossatto DR, Kolb, RM (2013) Leaf anatomical traits are correlated with tree dominance in a Neotropical deciduous forest. N Z J Bot. doi10.1080/0028825X.2013.795904 (in press)

  • Rossatto DR, Hoffmann WA, Franco AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest–savanna boundary. Funct Ecol 23:689–698

    Article  Google Scholar 

  • Rossatto DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150

    Article  Google Scholar 

  • Sanchez-Azofeifa A, Calvo J, Espirito Santo MM, Fernandes GW, Powers J, Quesada M (2013) Tropical dry forests in the Americas: The tropi-dry endeavour. In: Sanchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, Boca Raton, pp 1–16

    Chapter  Google Scholar 

  • Sass JE (1958) Botanical microtechnique, 3rd edn. The Iowa State University Press, Iowa

    Google Scholar 

  • Sefton CA, Montagu KD, Atwell BJ, Conrou JP (2002) Anatomical variation in juvenile eucalypt leaves account for differences in specific leaf area and CO2 assimilation rates. Aust J Bot 50:301–310

    Article  Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Syst 39:237–257

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002) The role of Druse and Raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 4:34–45

    Article  CAS  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson HP (1979) The plant surface (mainly leaf). In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1. New York Claredon Press, Oxford

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Zhu JJ, Cao KF (2007) Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees 21:631–643

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by FAPESP (Grant 2011/23112-3) and PROPe—UNESP (RENOVE program). We would like to thank Dr. Jeanine Felfili (in memoriam) for the opportunity to travel to the region of the dry forest and Dr. Fabricio Alvim Carvalho (UFJF) for suggestions and discussion about environmental constraints in Deciduous Forests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Rodrigo Rossatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somavilla, N.S., Kolb, R.M. & Rossatto, D.R. Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Braz. J. Bot 37, 69–82 (2014). https://doi.org/10.1007/s40415-013-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-013-0038-x

Keywords

Navigation