Skip to main content
Log in

Calcium oxalate crystals in plants

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown.

Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions.

Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.

Zusammenfassung

Calciumoxalat-Kristalle kommen in vielen Pflanzenarten und in fast allen Teilen und Geweben vor. Im allgemeinen werden sie innerhalb der Zellen gebildet, doch sind auch extrazelluläre Kristalle beschrieben. Die Kristallzellen oder Idioblasten zeigen besondere ultrastrukturelle Spezialitäten, die mit der Kristallbildung zusammenhängen. Diese ist meist mit Membranen, Räumen oder Einschlüssen in der order den Vakuole(n) verbunden. Tubuli, modifizierte Piastiden sowie vergrößerte Zellkerne sind ebenfalls für die Idioblasten erwähnt. Die Kristalle bestehen entweder aus der Monohydrat-(Whewellit) oder der Dihydrat-form (Weddellit). Mit verschiedenen Methoden können die Calciumoxalat-Kristalle identifiziert werden, die sichersten sind Röntgenstrahlen-Diffraction, Raman Mikroprobe-Analyse und die Infrarot-Spektroskopie. Viele pflanzliche Kristalle, die als Kalciumoxalat-Kristalle angesehen werden, sind nie eindeutig bestimmt worden. In einigen Fällen wurden sie lediglich auf Grund der Form als Whewellit oder Weddellit klassifiziert; es gibt aber Hinweise, dab die Kristallform unabhängig vom Hydratationsgrad ist und daß die Membranen der Kristallkammer in der Vakuole die Form beeinflussen. Der eigentliche Kontrollmechanismus ist noch unbekannt.

Oxalsäure wird auf verschiedenen Wegen in den Zellen synthetisiert, in Pflanzen kann Glycollat in Oxalsäure umgewandelt werden. Die Oxidation erfolgt in zwei Schritten mit Glyoxylsäure als Zwischenprodukt und dem Enzym Glycolsäure-Oxidase. Die Glyoxylasäure könnte durch enzymatische Spaltung der Isozitronensäure entstehen. Auch kann Oxalazetat in Oxalat und Azetat splitten. Eine weitere wichtige Ausgangssubstanz für Oxalat in Pflanzen ist die L-Ascorbin-säure, die Zwischenprodukte dieser Umbildung sind noch nicht eindeutig bekannt. Oxalsäure-Bildung erfolgt bei Tieren über ähnliche Stoffwechselwege und Calciumoxalat-Kristalle mögen in ähnlicher Weise entstehen.

Verschiedene Funktionen werden den pflanzlichen Kristall-Idioblasten und Kristallen zugeschrieben. Es besteht Gewißheit, daß die Oxalat-Synthese mit der Ionen-Balance korreliert ist; so können die pflanzlichen Kristalle die Anstrengungen belegen, ein Ionen-Gleichgewicht zu erhalten. In vielen Pflanzen wird das Oxalat nur in geringem Maße oder gar nicht weiter metabolisiert, es wird als Endprodukt des Stoffwechsels angesehen. Die Kristall-Idioblasten funktionieren wohl zur Entfernung des Oxalats, das sonst toxische Konzentration erreichen würde. Die Bildung hängt von der Verfügbarkeit sowohl des Calciums wie des Oxalats ab. Unter Calcium-Mangel kann es zur Reabsorption von Kristallen kommen, ein Hinweis auf eine gewisse Speicherfunktion der Idioblasten für Ca. Zusätzlich wird vermutet, daß die Kristalle mechanische Funktion haben und ein Schutz gegen fressende Tiere darstellen. Die Absicht dieses Review ist es, eine aktuelle Übersicht über die Kristall-Idioblasten und CaOxalat-Kristalle zu geben, die neueste Literatur berücksichtigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albert, R., H. Königshofer andH. Kinzel. 1980. Zur Osmoregulation einer physiologisch calciphoben und ökologisch calcicolen Pflanze (Dianthus luminitzeri Wiesb.). Flora169: 9–14.

    Google Scholar 

  • Alexandrow, W. G. von andA. S. Timofeev. 1926. Über die Lösung des Kristallischen Calciumoxalats in den Pflanzen. Bot. Arch.15: 279–293.

    CAS  Google Scholar 

  • Al-Rais, A. H., A. Myers andL. Watson. 1971. The isolation and properties of oxalate crystals from plants. Ann. Bot.35: 1213–1218.

    CAS  Google Scholar 

  • Arnon, D. I. andF. R. Whatley. 1954. Metabolism of isolated cellular particles from photosynthetic tissues. I. O2 uptake and CO2 evolution in the dark. Physiol. Plant.7: 602–613.

    Article  CAS  Google Scholar 

  • Arnott, H. J. 1966. Studies of calcification in plants. Pages 152–157In H. Fleisch, J. H. Blackwood, and M. Owen (eds.). Third European symposium on calcified tissues. Springer-Verlag, New York.

    Google Scholar 

  • —. 1973. Plant calcification. Pages 609–627In I. Zipkin (ed.). Biological mineralization. John Wiley and Sons, New York.

    Google Scholar 

  • —. 1976. Calcification in higher plants. Pages 55–78In N. Watabe and K. M. Wilbur (eds.). The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, S. C.

    Google Scholar 

  • — andF. G. E. Pautard. 1965. Development of raphide idioblasts inLemna. Am. J. Bot.52: 618.

    Google Scholar 

  • ——. 1970. Calcification in plants. Pages 375–446In H. Schraer (ed.). Biological calcification; cellular and molecular aspects. Appleton-Century-Crofts, New York.

    Google Scholar 

  • —— andH. Steinfink. 1965. Structure of calcium oxalate monohydrate. Nature208: 1197–1198.

    Article  CAS  Google Scholar 

  • Assailly, A. 1954. Sur les rapports de l’oxalate de chaux et de l’amidon. Compt. Rend. Acad. Sci. D. Paris238: 1902–1904.

    CAS  Google Scholar 

  • Audus, L. J. 1962. The mechanism of the perception of gravity by plants. Symp. Soc. Exp. Biol.16: 197–226.

    Google Scholar 

  • Austenfeld, F. andU. Leder. 1978. Über den Oxalathaushalt vonSalicornia europaea L. unter den Einfluß variierter Erdalkalisalz Gaben. Z. Pflanzenphysiol.88: 403–412.

    CAS  Google Scholar 

  • Bailley-Fenech, G., M. P. Kpodar, M. Piquemal andJ. Latché. 1979. Repartition de l’oxalate et réduction des nitrates dans les differents organes deFagopyrum esculentum M. C. R. Acad. Sci. Paris Ser. D.288: 327–330.

    Google Scholar 

  • Baker, A. L. andN. E. Tolbert. 1967. Purification and some properties of an alternate form of glycolate oxidase. Biochim. Biophys. Acta131: 179–197.

    Article  CAS  Google Scholar 

  • Baker, C. J. L. andA. Eden. 1954. Studies on the oxalate contents of the leaves of certain varieties ofBeta vulgaris. J. Agr. Sci.44: 394–399.

    CAS  Google Scholar 

  • Baker, E. M., J. C. Saari, andB. M. Tolbert. 1966. Ascorbic acid metabolism in man. Am. J. Clin. Nutr.19: 371–378.

    PubMed  CAS  Google Scholar 

  • Bangerth, F. 1976. Beziehungen zwischen dem Ca-Gehalt Bzs. der Ca Versorgung von Apfel-, Birnenund Tomatenfrüchten und ihrem Ascorbinsäuregehalt. Qual. Plant.24: 341–348.

    Article  Google Scholar 

  • Bannister, F. A. andM. H. Hey. 1936. Report on some crystalline components of the Weddell Sea deposits. Disc. Rep.13: 60–69.

    CAS  Google Scholar 

  • Bechtel, D. B. andH. T. Horner, Jr. 1975. Calcium excretion and deposition during sporogenesis inPhysarella oblonga. Calcified Tissue Res.18: 195–213.

    Article  CAS  Google Scholar 

  • Bell, C. W. andO. Biddulph. 1963. Translocation of calcium. Exchange versus mass flow. Plant Physiol.38: 610–614.

    PubMed  CAS  Google Scholar 

  • Bennett, B. andC. Rosenblum. 1961. Identification of calcium oxalate crystals in the myocardium in patients with uremia. Lab. Invest.16: 947–955.

    Google Scholar 

  • Bernstein, L. andH. E. Hayward. 1958. Physiology of salt tolerance. Ann. Rev. Plant Physiol.9: 25–46.

    Article  CAS  Google Scholar 

  • Biddulph, O., F. S. Nakayama andR. Cory. 1961. Transpiration stream and ascension of calcium. Plant Physiol.36: 429–436.

    PubMed  CAS  Google Scholar 

  • Biebl, R. 1940. Weitere Untersuchungen über die Wirkung der α Strahlen auf die Pflanzenzelle. Protoplasma35: 187–236.

    Article  Google Scholar 

  • Black, O. F. 1918. Calcium oxalate in theDasheen. Am. J. Bot.5: 447–451.

    Article  CAS  Google Scholar 

  • Bornkamm, R. 1965. Die Rolle des Oxalats im Stoffwechsel höherer grüner Pflanzen. Untersuchungen anLemna minor L. Flora156: 139–171.

    CAS  Google Scholar 

  • —. 1969. Typen des Oxalatstoffwechsels grüner Blätter bei einigen Familien höherer Pflanzen. Flora160: 317–336.

    CAS  Google Scholar 

  • Brown, J. W. andC. H. Wadleigh. 1955. Influence of sodium bicarbonate on the growth and chlorosis of garden beets. Bot. Gaz.116: 201–209.

    Article  CAS  Google Scholar 

  • Brumagen, D. M. andA. J. Hiatt. 1966. The relationship of oxalic acid to the translocation and utilization of calcium inNicotiana tabacum. Plant and Soil24: 239–249.

    Article  CAS  Google Scholar 

  • Buck, W. B., K. S. Preston, M. Abel andV. L. Marshall. 1966. Perirenal edema in swine: a disease caused by common weeds. J. Am. Vet. Med. Assoc.148: 1525–1531.

    PubMed  CAS  Google Scholar 

  • Burström, G. 1968. Calcium and plant growth. Biol. Rev.43: 287–316.

    Article  Google Scholar 

  • Buss, P. A., Jr. andN. R. Lersten. 1972. Crystals in tapetal cells of the Leguminosae. Bot. J. Linn. Soc.65: 81–85.

    Google Scholar 

  • Buttrose, M. S. andJ. N. A. Lott. 1978. Calcium oxalate druse crystals and other inclusions in seed protein bodies:Eucalyptus and jojoba. Can. J. Bot.17: 2083–2091.

    Google Scholar 

  • Calmés, M. J. 1969. Contribution a l’étude du métabolisme de l’acide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon). Compt. Rend. Acad. Sci., Ser. D,269: 704–707.

    Google Scholar 

  • Calmés, J. andJ. Carles. 1970. Le répartition et l’évolution des cristaux d’oxalate de calcium dans les tissues de Vigne vierge au cours d’un cycle de végétation. Bull. Soc. Bot. Fr.117: 189–198.

    Google Scholar 

  • — andM. Piquemal. 1977. Variation saisonniére des cristaux d’oxalate de calcium des tissus de Vigne vierge. Can. J. Bot.55: 2075–2078.

    Article  Google Scholar 

  • —,P. de Pommerol, R. Pulou, andJ. Carles. 1970. Structure et répartition des cristaux d’oxalate de calcium chez la Vigne vierge (Parthenocissus tricuspidata Planchon). C. R. Acad. Sci. Ser. D Paris270: 1800–1802.

    Google Scholar 

  • Carañgal, A. R., Jr.,E. K. Alban, J. E. Varner andR. C. Burrell. 1954. The influence of mineral nutrition on the organic acids of tomato,Lycopersicum esculentum. Plant Physiol.29: 355–360.

    Article  PubMed  Google Scholar 

  • Carles, J. andA. Assailly. 1954. De l’existence d’un cycle oxalique. Compt.Rend. Acad. Sci. Ser. D. Paris238: 2109–2110.

    CAS  Google Scholar 

  • Carpenter, W. D. andH. Beevers. 1959. Distribution and properties of isocitritase in plants. Plant Physiol.34: 403–409.

    PubMed  CAS  Google Scholar 

  • Chamberlain, C. J. 1935. Gymnosperms. Structure and evolution. The University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Chandler, R. F., Jr. 1937. Certain relationships between the calcium and oxalate content of foliage of certain forest trees. J. Agr. Res.55: 393–396.

    CAS  Google Scholar 

  • Chang, C. C. andH. Beevers. 1968. Biogenesis of oxalate in plant tissues. Plant Physiol.43: 1821–1828.

    PubMed  CAS  Google Scholar 

  • Chang, S. Y., R. H. Lowe andA. J. Hiatt. 1968. Relationship of temperature to the development of calcium deficiency symptoms inNicotiana tabacum. Agron. J.60: 435–436.

    Article  Google Scholar 

  • Chapman, H. D. 1966. Calcium. Pages 65–93In H. D. Chapman (ed.), Diagnostic criteria for plants and soil. University of California Press, Berkeley.

    Google Scholar 

  • Chartschenko, W. 1932. Verschiedene Typen des mechanischen Gewebes und des kristallinischen Ausbildungen als systematische Merkmale der GattungAllium. Beih. Bot. Zbl.50: 183–206.

    Google Scholar 

  • Chattaway, M. M. 1953. The occurrence of heartwood crystals in certain timbers. Aust. J. Bot.1: 27–38.

    Article  CAS  Google Scholar 

  • —. 1955. Crystals in woody tissues. Part I. Tropical Woods102: 55–74.

    Google Scholar 

  • —. 1956. Crystals in woody tissues. Part II. Tropical Woods104: 100–124.

    Google Scholar 

  • Cheavin, W. H. S. 1938. The crystals and cystoliths found in plant cells. Part I. Crystals. Microscope2: 155–158.

    CAS  Google Scholar 

  • Chiu, M. M. andR. H. Falk. 1975. Ultrastructural study onLemna perpusilla. Cytologia40: 313–322.

    Google Scholar 

  • Chrispeels, M. J. andJ. E. Varner. 1967. Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol.42: 398–406.

    PubMed  CAS  Google Scholar 

  • Clark, H. E. 1936. Effect of ammonium and nitrate nitrogen on the composition of the tomato. Plant Physiol.11: 5–24.

    PubMed  CAS  Google Scholar 

  • Cocco, G. andC. Sabelli. 1962. Affinamento della struttura della whewellite con elaboratore elettronico. Atti Soc. Toscana Sci. Nat. (Pisa) Proc. Verbali Mem/Ser A69: 289–298. CitedIn H. J. Arnott and F. G. E. Pautard. Calcification in plants. Pages 375–446In H. Schraer (ed.). Biological calcification. Appleton-Century-Crofts, New York. 1970.

    CAS  Google Scholar 

  • Corbett, J. R. andB. J. Wright. 1971. Inhibition of glycollate oxidase as a rational way of designing a herbicide. Phytochemistry10: 2015–2024.

    Article  CAS  Google Scholar 

  • Crombie, W. M. L. 1954. Oxalic acid metabolism inBegonia semperflorens. J. Expt. Bot.5: 173–183.

    Article  CAS  Google Scholar 

  • —. 1960. Metabolism of extracyclic organic acids. Pages 890–933In W. Ruhland (ed.). Encyclopedia of plant physiology. Vol. 12, Part 2. Springer-Verlag, Berlin.

    Google Scholar 

  • Czaninski, Y. 1968. Cellules oxaliféres du xyléme du Robinier (Robinia pseudo-acacia). C. R. Acad. Sci. Paris Ser. D.267: 2319–2321.

    Google Scholar 

  • Czapek, F. 1921. Biochemie der Pflanzen. Gustav Fisher, Jena. Vol. 3.

    Google Scholar 

  • Datta, P. K. andB. J. D. Meeuse. 1955. Moss oxalic acid oxidase—a flavoprotein. Biochim. Biophys. Acta17: 602–603.

    Article  PubMed  CAS  Google Scholar 

  • DeKock, P. C., Y. Ohta, R. H. E. Inkson andA. H. Knight. 1973. The effect of oxalate and ethylenediaminetetraacetic acid on absorption of calcium intoLemna. Physiol. Plant.28: 379–382.

    Article  CAS  Google Scholar 

  • Dell, B. andA. J. McComb. 1977. Glandular hair formation and resin secretion inEremophila fraseri F. Meull (Myoporaceae). Protoplasma92: 71–86.

    Article  Google Scholar 

  • Dempsey, E. F., A. P. Forbes, R. A. Melick andP. H. Henneman. 1960. Urinary oxalate excretion. Metabolism.9: 52–58.

    PubMed  CAS  Google Scholar 

  • Dengg, E. 1971. Die Ultrastruktur der Blattgalle vonDasyneura urticae aufUrtica dioica. Protoplasma72: 367–379.

    Article  Google Scholar 

  • Dijkshoorn, W. 1962. Metabolie regulation of the alkaline effect of nitrate utilization in plants. Nature194: 165–167.

    Article  CAS  Google Scholar 

  • —. 1973. Organic acids and their role in ion uptake. Pages 163–188In G. W. Butler and R. W. Bailey (eds.). Chemistry and biochemistry of herbage, Vol. II. Academic Press, New York.

    Google Scholar 

  • Dodds, J. A. A. andR. J. Ellis. 1966. Cation-stimulated adenosine triphosphatase activity in plant cell walls. Biochem. J.101: 31P-32P.

    CAS  Google Scholar 

  • Dormer, K. J. 1961. The crystals in the ovaries of certain Compositae. Ann. Bot.25: 241–254.

    CAS  Google Scholar 

  • Dunne, T. C. 1932. Plant buffer systems in relation to the absorption of bases by plants. Hilgardia7: 207–234.

    CAS  Google Scholar 

  • Eilert, G. B. 1974. An ultrastructural study of the development of raphide crystal cells in the roots ofYucca torreyi. Ph.D. Dissertation. University of Texas at Austin (Libr. Congr. Card No. Mic. 74–24,855). 167 pp. University Microfilms, Ann Arbor, Mich. (Diss. Abst. Int. 35:05-B).

  • Elliot, J. S. andI. N. Rabinowitz. 1976. Crystal habit, structure and incidence in the urine of a hospital population. Pages 257–260In H. Fleisch, W. G. Robertson, L. H. Smith and W. Vahlensieck (eds.). Urolithiasis Research Plenum Publ. Corp., New York.

    Google Scholar 

  • Epstein, E. 1973. Flow in the phloem and the immobility of calcium and boron: a new hypothesis in support of an old one. Experientia29: 133–134.

    Article  CAS  Google Scholar 

  • Erdman, J. A., L. P. Gaugh andR. W. White. 1977. Calcium oxalate as source of high ash yields in the terricolous lichenParmelia chlorochroa. Bryologist80: 334–339.

    Article  CAS  Google Scholar 

  • Ergle, D. R. andF. M. Eaton. 1949. Organic acids of the cotton plant. Plant Physiol.24: 373–388.

    PubMed  CAS  Google Scholar 

  • Evans, H. J. andR. V. Troxler. 1953. Relation of calcium nutrition to the incidence of blossom-end rot in tomatoes. Am. Soc. Hort. Sci. Proc.61: 346–352.

    CAS  Google Scholar 

  • Fasset, D. W. 1973. Oxalates. Pages 346–362In Committee on Food Protection, Food and Nutrition Board, National Research Council (ed.). Toxicants occurring naturally in foods. National Academy of Science, Washington, D.C.

    Google Scholar 

  • Feigelson, P., J. D. Davidson andR. K. Robins. 1956. Pyrazolopyrimidines as inhibitors and substrates of xanthine oxidase. J. Biol. Chem.226: 993–1000.

    Google Scholar 

  • Finkle, B. J. andD. I. Arnon. 1954. Metabolism of isolated cellular particles from photosynthetic tissue. II. Oxidative decarboxylation of oxalic acid. Physiol. Plant7: 614–624.

    Article  CAS  Google Scholar 

  • Foster, A. S. 1956. Plant idioblasts: remarkable examples of cell specialization. Protoplasma46: 184–193.

    Article  Google Scholar 

  • Franceschi, V. R. 1978. A microscopic and physiological study of calcium oxalate crystal idioblast development inPsychotria callus. M.S. Thesis, Iowa State University, Ames.

    Google Scholar 

  • — andH. T. Horner, Jr. 1979. Use ofPsychotria punctata callus in study of calcium oxalate crystal idioblast formation. Z. Pflanzenphysiol.92: 61–75.

    CAS  Google Scholar 

  • ——. 1980. A microscopic comparison of calcium oxalate crystal idioblasts in plant parts and callus cultures ofPsychotria punctata Vatke (Rubiaceae). Z. Pflanzenphysiol.97: 449–455.

    CAS  Google Scholar 

  • Frank, E. 1967. Zur Bildung des Kristallidioblastenmusters beiCanavalia ensiformis D.C. I. Z. Pflanzenphysiol.58: 33–48.

    Google Scholar 

  • —. 1969a. Zur Bildung des Kristallidioblastenmusters beiCanavalia ensiformis D.C. II. Zur Zellteilung in der Epidermis. Z. Pflanzenphysiol.60: 403–413.

    Google Scholar 

  • —. 1969b. Zur Bildung des Kristallidioblastenmusters beiCanavalia ensiformis D.C. III. Gehalt an Oxalat, Stickstoff und Trockengewicht im Verlauf der Blattentwicklung. Z. Pflanzenphysiol.61: 114–121.

    CAS  Google Scholar 

  • —. 1972. The formation of crystal idioblasts inCanavalia ensiformis D.C. at different levels of calcium supply. Z. Pflanzenphysiol.67: 350–358.

    CAS  Google Scholar 

  • —andW. A. Jensen. 1970. On the formation of the pattern of crystal idioblasts inCanavalia ensiformis D.C. IV. The fine structure of the crystal cells. Planta95: 202–217.

    Article  Google Scholar 

  • Franke, W., F. Schumann andB. Banerjee. 1943. Zur biologischen Oxydation der Oxalsaüre. II. Z. Physiol. Chem.274: 24–42.

    Google Scholar 

  • Frey, A. 1925. Calciumoxalat-Monohydrat und -Trihydrat in der Pflanze: Eine physiologische Studie auf Grund der Phasenlehre. Vierteljahrasschr. Naturforsch. Ges. Zuer.70: 1–65.

    CAS  Google Scholar 

  • —. 1929. Calciumoxalat-Monohydrat und -Trihydrat. Pages 81–118In K. Linsbauer (ed.). Handbuch der Pflanzenanatomie Vol. 3. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Frey-Wyssling, A. 1935. Die Stoffausscheidungen der höheren Pflanzen. Springer-Verlag, Berlin.

    Google Scholar 

  • Friedmann, E. T., W. C. Roth, J. B. Turner andR. S. McEwen. 1972. Calcium oxalate crystals in the aragonite-producing green algaPenicillus and related genera. Science177: 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Gambles, R. L. andN. G. Dengler. 1974. The leaf anatomy of hemlock,Tsuga canadensis. Can. J. Bot.52: 1049–1056.

    Article  Google Scholar 

  • Gaudet, J. 1960. Ontogeny of the foliar sclereids inNymphaea odorata. Am. J. Bot.47: 525–532.

    Article  Google Scholar 

  • Gausman, H. W. 1973. Light reflectance ofPeperomia chloroplasts. J. Rio Grande Valley Hort. Soc.27: 86–89.

    Google Scholar 

  • —,D. E. Escobar andE. B. Knipling. 1977. Relation ofPeperomia obtusifolia ’s anomalous leaf reflectance to its leaf anatomy. Photogramm. Enginr. Remote Sensing43: 1183–1185.

    Google Scholar 

  • Gentile, A. C. 1954. Carbohydrate metabolism and oxalic acid synthesis byBotrytis cinerea. Plant Physiol.29: 257–261.

    PubMed  CAS  Google Scholar 

  • Gibson, A. C. 1973. Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica5: 29–65.

    Article  Google Scholar 

  • Gibson, R. I. 1974. Descriptive human pathological mineralogy. Am. Mineral.59: 1177–1182.

    CAS  Google Scholar 

  • Gilbert, S. G., C. B. Shear andC. M. Gropp. 1951. The effects of the form of nitrogen and the amount of base supply on the organic acids of tung leaves. Plant Physiol.26: 750–756.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J. andN. F. Tobin. 1964. Enzymatic decarboxylation of oxalate by extracts of plant tissue. Plant Physiol.39: 139–145.

    PubMed  CAS  Google Scholar 

  • Golazewska, Z. 1934. Die Entwicklung des Embryosackes beiAspidistra elatior. Acta Soc. Bot. Poloniae11: 399–407.

    Google Scholar 

  • Graustein, W. C., K. Cromack, Jr. andP. Sollins. 1977. Calcium oxalate: Occurrence in soils and effects on nutrient and geochemical cycles. Science198: 1252–1254.

    Article  PubMed  CAS  Google Scholar 

  • Guardiola, J. L. andJ. F. Sutcliffe. 1972. Transport of materials from the cotyledons during germination of seeds of the garden pea (Pisum sativum L.). J. Exptl. Bot.23: 322–337.

    Article  CAS  Google Scholar 

  • Guilliermond, A. 1941. The cytoplasm of the plant cell. Chronica Botanica Co., Waltham, Mass.

    Google Scholar 

  • Gulliver, G. 1864. On Onagraceae and Hydrocharitaceae as elucidating the value of raphides as natural characters. J. Bot.2: 68–70.

    Google Scholar 

  • Haberlandt, G. 1914. Physiological Plant Anatomy. MacMillan and Co., London.

    Google Scholar 

  • Hagler, L. andR. H. Herman. 1973. Oxalate metabolism. I. Am. J. Clin. Nutr.26: 758–765.

    PubMed  CAS  Google Scholar 

  • Hayaishi, O., H. Shimazono, M. Katagiri andY. Saito. 1956. Enzymatic formation of oxalate and acetate from oxaloacetate. J. Am. Chem. Soc.78: 5126–5127.

    Article  CAS  Google Scholar 

  • Heintzelman, C. E., Jr. andR. A. Howard. 1948. The comparative morphology of the Icacinaceae. V. The pubescence and crystals. Am. J. Bot.35: 45–52.

    Article  Google Scholar 

  • Hewitt, E. J. andT. A. Smith. 1975. Plant mineral nutrition. The English Universities Press Ltd., London.

    Google Scholar 

  • Hodgkinson, A. 1976. Uric acid disorders in patients with calcium stones. Brit. J. Urol.48: 1–5.

    PubMed  CAS  Google Scholar 

  • —. 1977. Oxalic acid in biology and medicine. Academic Press, Inc., London.

    Google Scholar 

  • — andP. M. Zarembski. 1968. Oxalic acid metabolism in man: A review. Calcif. Tissue Res.2: 115–132.

    Article  PubMed  CAS  Google Scholar 

  • Honegger, R. 1952. Das Polyhydrat des Kalzium-Oxalats. Vierteljahrasschr. Naturforsch. Ges. Zuer.97: 1–44.

    Google Scholar 

  • Horner, H. T., Jr. 1976. The anatomy of crystal idioblasts composing the photosynthetic layer inPeperomia leaves. Abstract of paper presented before Bot. Soc. Am., A.I.B.S. Meeting, Tulane University, New Orleans.

    Google Scholar 

  • —. 1977. A comparative light- and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am. J. Bot.64: 745–759.

    Article  Google Scholar 

  • — andV. R. Franceschi. 1978. Calcium oxalate crystal formation in air spaces of the stem ofMyriophyllum. Scanning Electron Microscopy Symp. 1978, Vol.II: 69–76.

    Google Scholar 

  • — andB. L. Wagner. 1980. The association of druse crystals with the developing stomium ofCapsicum annuum (Solanaceae) anthers. Am. J. Bot.67: 1347–1360.

    Article  Google Scholar 

  • — andR. E. Whitmoyer. 1972. Raphide crystal cell development in leaves ofPsychotria punctata (Rubiaceae). J. Cell Sci.11: 339–355.

    PubMed  CAS  Google Scholar 

  • Hurel-Py, G. 1938. Etude des moyaux végétatifs deVanilla planifolia Rev. Cytol. Cytophysiol. Vég.3: 129–133.

    Google Scholar 

  • —. 1942. Sur les vacuoles des cellules á raphides. Compt. Rend. Soc. Biol.215: 31–33.

    Google Scholar 

  • Hyde, B. B. andR. L. Paliwal. 1958. Studies on the role of cations in the structure and behavior of plant chromosomes. Am. J. Bot.45: 433–438.

    Article  CAS  Google Scholar 

  • Hymlö, B. 1953. Transpiration and ion absorption. Physiol. Plant.6: 333–405.

    Article  Google Scholar 

  • Inoue, K., M. Nishimura andT. Akazawa. 1978. Effect of α-Hydroxy-2-pyridinemethanesulfonate on glycolate metabolism in spinach leaf protoplasts. Plant Cell Physiol.19: 317–325.

    CAS  Google Scholar 

  • Jacard, P. andA. Frey. 1928. Kristallhabitus und Ausbildungsformer des Ca-oxalats als Artmerkmal. Ein Beitrag zur systematischen Anatomie der GattungAllium. Vierteljahrasschr. Naturforsch. Ges. Zuer.73: 127.

    Google Scholar 

  • Jacobson, L. andL. Ordin. 1954. Organic acid metabolism and ion absorption in roots. Plant Physiol.29: 70–75.

    PubMed  CAS  Google Scholar 

  • Jacoby, B. 1967. Effect of the roots on calcium ascent in bean stems. Ann. Bot.31: 725–730.

    CAS  Google Scholar 

  • Jakoby, W. B., E. Ohmura andO. Hayaishi. 1956. Enzymatic decarboxylation of oxalic acid. J. Biol. Chem.222: 435–446.

    PubMed  CAS  Google Scholar 

  • Janota, L. 1950. Utilization of oxalic acid byPseudomonas extorquens Bassalik. Med. Doswiadczalna Mikrobiol.2: 131–132.

    CAS  Google Scholar 

  • Jeghers, H. andR. Murphy. 1945. Practical aspects of oxalate metabolism. New Engl. J. Med.233: 208–215.

    Article  CAS  Google Scholar 

  • Johnson, F. B. andK. Pani. 1962. Histochemical identification of calcium oxalate. Arch. Path.74: 347–351.

    CAS  Google Scholar 

  • Jones, D., W. J. McHardy andM. J. Wilson. 1976. Ultrastructure and chemical composition of spines in Mucorales. Trans. Br. Mycol. Soc.66: 153–157.

    Article  Google Scholar 

  • Jones, R. G. W. andO. R. Lunt. 1967. The function of calcium in plants. Bot. Rev.33: 407–426.

    Article  CAS  Google Scholar 

  • Joy, K. W. 1964. Accumulation of oxalate in tissues of sugar-beet, and the effect of nitrogen supply. Ann. Bot.28: 689–701.

    CAS  Google Scholar 

  • Kallicate, H. andO. Kauste. 1964. Ingestion of rhubarb leaves as cause of oxalic acid poisoning. Ann. Paediatr. Fenn.10: 228–231.

    Google Scholar 

  • Kelley, W. N. andT. D. Beardmore. 1970. Allopurinol: alteration in pyrimidine metabolism in man. Science169: 388–390.

    Article  PubMed  CAS  Google Scholar 

  • Kenten, R. H. andP. J. G. Mann. 1952. Hydrogen peroxide formation in oxidations catalysed by plant α-hydroxyacid oxidase. Biochem. J.52: 130–134.

    PubMed  CAS  Google Scholar 

  • Key, J. L. 1964. Ribonucleic acid and protein synthesis as essential processes for cell elongation. Plant Physiol.39: 365–370.

    PubMed  CAS  Google Scholar 

  • Kingsbury, J. M. 1964. Poisonous plants of the United States and Canada. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kitchen, J. W., E. E. Burns andR. Langston. 1964. The effect of light, temperature and ionic balance on oxalate formation in spinach. Proc. Am. Soc. Hort. Sci.85: 465–470.

    CAS  Google Scholar 

  • Kornberg, H. L. andH. A. Krebs. 1957. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature179: 988–991.

    Article  PubMed  CAS  Google Scholar 

  • Kóssa, J. von. 1901. Über die in Organismus künstlich erzeugbaren Verkalkungen. Beit. Path. Anat.29: 163–202.

    Google Scholar 

  • Kpodar, M. P., M. Piquemal, J. Calmés andJ-C. Latché. 1978. Relations entre nutrition azotee et metabolisme photorespiratoire chez une plante a oxalate,Fagopyrum esculentum M. Physiol. Vég.16: 117–130.

    CAS  Google Scholar 

  • Ledbetter, M. andK. Porter. 1970. Introduction to the fine structure of plant cells. Springer-Verlag, New York.

    Google Scholar 

  • Lersten, N. R. andH. T. Homer, Jr. 1976. Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot. Rev.42: 145–214.

    Google Scholar 

  • Liegel, W. 1970. Calciumoxalat-Abscheidungen in Fruchtstielen einiger Apfelvarietäten. Angew. Bot.44: 223–232.

    CAS  Google Scholar 

  • Loewus, F. A., F. G. Wagner andJ. C. Yang. 1975. Biosynthesis and metabolism of ascorbic acid in plants. Ann. N. Y. Acad. Sci.258: 7–23.

    Article  PubMed  CAS  Google Scholar 

  • Lötsch, B. von andH. Kinzel. 1971. Zum Calciumbedarf von Oxalatpflanzen. Biochem. Physiol. Pflanzen162: 209–219.

    Google Scholar 

  • Lott, J. N. A. 1976. A scanning electron microscope study of green plants. C. V. Mosby, Co., Saint Louis.

    Google Scholar 

  • — andM. S Buttrose. 1978. Location of reserves of mineral elements in seed protein bodies: macadamia nut, walnut, and hazel nut. Can. J. Bot.56: 2072–2082.

    CAS  Google Scholar 

  • Lowenhaupt, B. 1956. The transport of calcium and other cations in submerged aquatic plants. Biol. Rev.31: 371–395.

    Article  CAS  Google Scholar 

  • Lowenstam, H. A. 1968. Weddellite in a marine gastropod and in Antarctic sediments. Science162: 1129–1130.

    Article  PubMed  CAS  Google Scholar 

  • —. 1972. Phosphatic hard tissues of marine invertebrates: their nature and mechanical function, and some fossil implications. Chem. Geol.9: 153–156.

    Article  CAS  Google Scholar 

  • Mandels, M. andE. T. Reese. 1957. Induction of cellulase inTrichoderma viride as influenced by carbon sources and metals. J. Bact.73: 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Manery, J. F. 1966. Effects of Ca ions on membranes. Fed. Proc.25: 1804–1810.

    PubMed  CAS  Google Scholar 

  • Marchant, R. andA. W. Robards. 1968. Membrane systems associated with the plasmalemma of plant cells. Ann. Bot.32: 457–471.

    Google Scholar 

  • Marinos, N. G. 1962. Studies on submicroscopic aspects of mineral deficiency. I. Calcium deficiency in the shoot apex of barley. Am. J. Bot.49: 834–841.

    Article  CAS  Google Scholar 

  • Marschner, H. andI. Günther. 1964. Ionenaufnahlme und Zellstruktur bei Gerstenwurzeln in Abhängigkeit von der Calcium-Versorgung. Z. Pflanzenernähr., Bodenk.107: 118–136.

    Article  CAS  Google Scholar 

  • Marshall, V. L., W. B. Buck andG. L. Bell. 1967. Pigweed (Amaranthus retroflexus): An oxalate-containing plant. Am. J. Vet. Res.28: 888–889.

    PubMed  CAS  Google Scholar 

  • Maxwell, D. P. andD. F. Bateman. 1968. Oxalic acid biosynthesis bySclerotium rolfsii. Phytopathology58: 1635–1642.

    CAS  Google Scholar 

  • McGee-Russell, S. M. 1958. Histochemical methods for calcium. J. Histochem. Cytochem.6: 22–42.

    PubMed  CAS  Google Scholar 

  • McGeorge, W. T. 1949. Lime-induced chlorosis: relation between active iron and citric and oxalic acids. Soil Sci.68: 381–390.

    Article  CAS  Google Scholar 

  • McNair, J. B. 1932. The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate. Am. J. Bot.19: 255–271.

    Article  CAS  Google Scholar 

  • Meeuse, J. D. andJ. M. Campbell. 1959. An inhibitor of oxalic acid oxidase in beet extracts. Plant Physiol.34: 583–586.

    PubMed  CAS  Google Scholar 

  • Merkel, D. 1973. Der Einfluß des NO3:NH4-Verhältnisses in der Nährlösung auf Ertrag und Gehalte an organischen und an organischen Ionen von Tometen pflanzen. Z. Pflanzenernahr. Bodenk.134: 236–246.

    Article  CAS  Google Scholar 

  • Metcalfe, C. R. andL. Chalk. 1950. Anatomy of the Dicotyledons. Clarendon Press, Oxford. Vol. 1 & 2.

    Google Scholar 

  • Millerd, A., R. K. Morton andJ. R. E. Wells. 1963a. Oxalic acid synthesis in shoots ofOxalis pes-caprae (L.). Biochem. J.86: 57–62.

    PubMed  CAS  Google Scholar 

  • ———. 1963b. Oxalic acid synthesis in shoots ofOxalis pes-caprae. The precursors of glycolic acid and glyoxylic acid. Biochem. J.88: 276–281.

    PubMed  CAS  Google Scholar 

  • ———. 1963c. Role of isocitrate lyase in synthesis of oxalic acid in plants. Nature196: 955–956.

    Article  Google Scholar 

  • ———. 1963d. Enzymatic synthesis of oxalic acid inOxalis pes-caprae. Biochem. J.88: 281–288.

    PubMed  CAS  Google Scholar 

  • Molisch, H. 1918. Beiträge zur Mikrochemie der Pflanze. Nr. 12 u.13. Deut. Bot. Ges.36: 474–481.

    CAS  Google Scholar 

  • Mollenhauer, H. H. andD. A. Larson. 1966. Developmental changes in raphide-forming cells ofVanilla planifolia andMonstera deliciosa. J. Ultrastruct. Res.16: 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Morton, R. K. andJ. R. E. Wells. 1964. Isocitrate lyase and the formation of α-keto γhydroxyglutaric acid inOxalis. Nature201: 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Myers, A. T. 1947. Seasonal changes in total and soluble oxalates in leaf blades and petioles of rhubarb. J. Agr. Res.74: 33–47.

    Google Scholar 

  • Nadson, G. andB. Rochline-Gleichgerwicht. 1928. Apparition des cristaux d’oxalate de calcium dans les cellules vegetales sous l’influence de la radiation ultra violette. Compt. Rend. Soc. Biol.98: 363–365.

    CAS  Google Scholar 

  • Nagahisa, M. andA. Hattori. 1964. Studies on oxalic acid oxidase in green leaves. Plant Cell Physiol.5: 205–215.

    CAS  Google Scholar 

  • Noll, C. R., Jr. andR. H. Burris. 1954. Nature and distribution of glycolic acid oxidase in plants. Plant Physiol.29: 261–265.

    PubMed  CAS  Google Scholar 

  • Nord, F. F. andJ. C. Vitucci. 1947. On the mechanism of enzyme action. XXIX. The acetate metabolism of certain wood-destroying molds and the mechanism of wood decay. Arch. Biochem.14: 229–241.

    CAS  PubMed  Google Scholar 

  • Norris, L., R. E. Norris andM. Calvin. 1955. A survey of the rates and products of short term photosynthesis in plants of nine phyla. J. Expt. Bot.6: 64–74.

    Article  CAS  Google Scholar 

  • Nuss, R. F. andF. A. Loewus. 1978. Further studies on oxalic acid biosynthesis in oxalateaccumulating plants. Plant Physiol.61: 590–592.

    PubMed  CAS  Google Scholar 

  • O’Brien, T. J., C. Jarvis, J. H. Cherry andJ. B. Hanson. 1968. Enhancement by 2,4-dichlorophenoxyacetic acid of chromatin RNA polymerase in soybean hypocotyl tissue. Biochim. Biophys. Acta169: 35–43.

    PubMed  CAS  Google Scholar 

  • Oke, O. L. 1969. Oxalic acid in plants and in nutrition. World Rev. Nutr. Diet.10: 262–303.

    PubMed  CAS  Google Scholar 

  • Olsen, C. 1939. Absorption of calcium and formation of oxalic acid in higher green plants. Compt. Rend. Lab. Carlsberg., Ser. chim.23: 101–124.

    CAS  Google Scholar 

  • Osmond, C. B. 1967. Acid metabolism inAtriplex. I. Regulation of oxalate synthesis by the apparent excess cation absorption in leaf tissue. Austral. J. Biol. Sci.20: 575–587.

    CAS  Google Scholar 

  • — andP. N. Avadhani. 1968. Acid metabolism inAtriplex. II. Oxalate synthesis during acid metabolism in the dark. Austral. J. Biol. Sci.21: 917–927.

    CAS  Google Scholar 

  • Osweiler, G. D., W. B. Buck andE. J. Bicknell. 1969. Production of perirenal edema in swine withAmaranthus retroflexus. Am. J. Vet. Res.30: 557–566.

    PubMed  CAS  Google Scholar 

  • Parameswaran, N. andR. Schultze. 1974. Fine structure of chambered crystalliferous cells in the bark ofAcacia Senegal. Z. Pflanzenphysiol.71: 90–93.

    Google Scholar 

  • Paupardin, C. 1964. Recherches préliminaries sur le comportement de l’oxalate de calcium dans des tissus végétaux cultivés in vitro. Rev. Cytol. Biol. Vég.27: 253–257.

    Google Scholar 

  • Pepkowitz, L. P., S. G. Gilbert andJ. W. Shive. 1944. The importance of oxygen in the nutrient substrate for plants—organic acids. Soil Sci.58: 295–303.

    Article  CAS  Google Scholar 

  • Pfeiffer, H. 1925. Über die Wasserstoffionenkonzentration (H′) als Determinationsfaktor physiologischer Gewebegeschehen in der sekundaren Rinde der Pflanzen. New Phytol.24: 65–98.

    Article  CAS  Google Scholar 

  • Philipsborn, H. von. 1952. Über Calciumoxalat in Pflanzenzellen. Protoplasma41: 415–424.

    Article  Google Scholar 

  • Pierce, E. C. andC. D. Appleman. 1943. Role of ether soluble organic acids in the cationanion balance in plants. Plant Physiol.18: 224–238.

    PubMed  CAS  Google Scholar 

  • Piper, C. V. andW. J. Morse. 1923. The soybean. McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Pireyre, N. 1961. Contribution á l’étude morphologique histologique et physiologique des cystolithes. Rev. Cytol. Biol. Végét.23: 93–320.

    CAS  Google Scholar 

  • Pizzolato, P. 1964. Histochemical recognition of calcium oxalate. J. Histochem. Cytochem.12: 333–336.

    PubMed  CAS  Google Scholar 

  • Pobeguin, T. 1943. Les oxalates de calcium chez quelques angiospermes: étude physicochimique-formation-destin. Ann. Sci. Nat., Bot., Ser. 11,4: 1–95.

    CAS  Google Scholar 

  • Pohl, R. W. 1965. Contact dermatitis from the juice ofOrnithogalum caudatum. Toxicon3: 167–168.

    Article  PubMed  CAS  Google Scholar 

  • Polson, C. J. andR. N. Tattersall. 1959. Clinical toxicology. English Univ. Press, London.

    Google Scholar 

  • Prankerd, T. L. 1920. Statocytes of the wheat culm. Bot. Gaz.70: 148–152.

    Article  Google Scholar 

  • Price, J. L. 1970. Ultrastructure of druse crystal idioblasts in leaves ofCercidium floridum. Am. J. Bot.57: 1004–1009.

    Article  Google Scholar 

  • Pucher, G. W., A. J. Wakeman andH. B. Vickery. 1939. Organic acid metabolism of the buckwheat plant. Plant Physiol.14: 333–340.

    PubMed  CAS  Google Scholar 

  • Rakován, J. N., A. Kovacs andJ. Szujké-Lacza 1973. Development of idioblasts and raphides in the aerial root ofMonstera deliciosa Liebm. Acta Biol. Acad. Sci. Hung.24: 103–118.

    PubMed  Google Scholar 

  • Ranson, S. L. 1965. The plant acids. Pages 493–525In J. Bonner and J. E. Varner (eds.). Plant biochemistry. Academic Press, New York.

    Google Scholar 

  • Rao, J. S. andP. R. Mohana. 1972. Morphology and embryology ofTieghemopanax sambucifolius with comments on the affinities of the family Araliaceae. Phytomorphology22: 75–87.

    Google Scholar 

  • — andD. D. Sundararaj. 1951. Stinging hairs inTragia cannabina L. J. Indian Bot. Soc.30: 88–91.

    Google Scholar 

  • Rasmussen, G. K. andP. F. Smith. 1961. Effects of calcium, potassium and magnesium on oxalic, malic and citric acid content of Valencia orange leaf tissue. Plant Physiol.36: 99–101.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J. A. 1977. H+ and Ca2+ in phloem and symplast. Relation of relative immobility of the ions to the cytoplasmic nature of the transport paths. New Phytol.79: 465–480.

    Article  CAS  Google Scholar 

  • — andF. A. Smith. 1974. Significance of hydrogen ion transport in plant cells. Can. J. Bot.52: 1035–1048.

    Article  CAS  Google Scholar 

  • ——. 1976. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol.76: 415–431.

    Article  CAS  Google Scholar 

  • Richardson, K. E. andN. E. Tolbert. 1961. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase. J. Biol. Chem.236: 1280–1284.

    PubMed  CAS  Google Scholar 

  • Rivera, E. R. 1973.Echinomastus intertextus (Cactaceae): An ultrastructural, physiological and biochemical study. Ph.D. Dissertation. University of Texas at Austin (Libr. Congr. Card No. Mic. 74-5315). 401 pp. University Microfilms, Ann Arbor, Mich. (Diss. Abst. Int. 34:09-B).

  • Robertson, B. L. 1978. Raphide-sacs as epidermal appendages inJubaeopsis caffra Becc. (Palmae). Ann. Bot.42: 489–490.

    Google Scholar 

  • Robyns, W. 1928. L’origine et les constituants protoplasmatiques des cellules a raphidesHyacinthus orientalis. La Cellule38: 177–198.

    Google Scholar 

  • Roth, D. A. andR. V. Breitenfield. 1977. Vitamin C and oxalate stones. J. Am. Med. Ass.237: 768.

    Article  CAS  Google Scholar 

  • Rothert, W. 1900. Die Krystallzellen der Pontederiaceen. Bot. Zeit.58: 75–106.

    Google Scholar 

  • Roughan, P. G., P. Grattan andI. J. Warrington. 1976. Effect of nitrogen source on oxalate accumulation inSetaria sphacelata (cv. “Kazungala”). J. Sci. Food Agr.27: 281–286.

    Article  CAS  Google Scholar 

  • Ruhland, W. andJ. Wolf. 1934. Metabolism of carbohydrates and organic acids in plants. Ann. Rev. Biochem.3: 501–518.

    Article  CAS  Google Scholar 

  • Saffo, M. B. andH. A. Lowenstam. 1978. Calcareous deposits in the renal sac of a molgulid tunicate. Science200: 1166–1168.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, W. S. andM. Hanson. 1974. Mature raphid and raphid idioblast structure in plants of the edible aroid generaColocasia, Alocasia, andXanthosoma. Ann, Bot.38: 739–748.

    Google Scholar 

  • —— andR. C. Jones. 1972. Raphides with barbs and grooves inXanthosoma sagittifolium (Araceae). Science178: 314–315.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, K. 1963. Studies on oxalic acid metabolism inBegonia plant. Bot. Mag.76: 48–58.

    CAS  Google Scholar 

  • Scharrer, K. andJ. Jung. 1954. Weitere Untersuchungen über Beziehungen zwischen Nährstoffversorgung und Oxalsäurebildung in Zuckerrüben — und Mangoldblatt. Z. Pflanzenernährg., Düng. v. Bodenkdc66: 1–18.

    Article  CAS  Google Scholar 

  • Schlichtinger, F. 1956. Karyologische Untersuchungen an endopolyploiden Chromozentrenkernen vonGibbaeum heathii in Zusammenhang mit der Differenzierung. Österr. Botan. Zeitschift103: 485–528.

    Article  Google Scholar 

  • Schneider, A. 1901. The probable function of calcium oxalate crystals in plants. Bot. Gaz.32: 142–144.

    Article  Google Scholar 

  • —. 1961. L’acide oxalique chez le pêcher. Compt. Rend. Acad. Sci. Ser. D.253: 523–525.

    CAS  Google Scholar 

  • Schötz, F., L. Diers andH. Bathelt. 1970. Zur Feinstruktur der Raphidenzellen. I. Die Entwicklung der Vakuolen und der Raphiden. Z. Pflanzenphysiol.63: 91–113.

    Google Scholar 

  • Schürhoff, P. 1908. Ozellen und Lichtkondensoren bei einigen Peperomien. Beih. Bot. Zbl.23: 14–26.

    Google Scholar 

  • Scott, F. M. 1941. Distribution of calcium oxalate crystals inRicinus communis in relation to tissue differentiation and presence of other ergastic substances. Bot. Gaz.103: 225–246.

    Article  CAS  Google Scholar 

  • Scurfield, G., A. J. Michell andS. R. Silva. 1973. Crystals in woody stems. Bot. J. Linn. Soc.66: 277–289.

    CAS  Google Scholar 

  • Seal, S. N. andS. P. Sen. 1970. The photosynthetic production of oxalic acid inOxalis corniculata. Plant Cell Physiol.11: 119–128.

    CAS  Google Scholar 

  • Shimazono, H. andO. Hayaishi. 1957. Enzymatic decarboxylation of oxalic acid. J. Biol. Chem.227: 151–159.

    PubMed  CAS  Google Scholar 

  • Shimokawa, K., Y. Ueda andZ. Kasai. 1972. Decarboxylation of oxalic acid during ripening of banana fruit (Musa sapientum L.). Agr. Biol. Chem.36: 2021–2024.

    CAS  Google Scholar 

  • Silver, V. L., andJ. L. Price. 1969. Demonstration of calcium oxalate crystals in plant tissues by the Pizzolato (AgNO3-H3O3) method. Stain Tech.44: 257–259.

    CAS  Google Scholar 

  • Solereder, H. 1908. Systematic anatomy of the dicotyledons. Transi. L. A. Boodle and F. E. Fritsch. Clarendon Press, Oxford. 2 Vol.

    Google Scholar 

  • Sorokin, H. andA. L. Sommer. 1940. Effects of calcium deficiency upon the roots ofPisum sativum. Am. J. Bot.27: 308–318.

    Article  CAS  Google Scholar 

  • Spencer, M. 1965. Fruit ripening. Pages 793–825In J. Bonner and J. E. Varner (eds.). Plant biochemistry. Academic Press, New York.

    Google Scholar 

  • Srivastava, S. K. andP. S. Krishman. 1962. An oxalic acid oxidase in leaves ofBougainvillea spectabilis. Biochem. J.85: 33–38.

    PubMed  CAS  Google Scholar 

  • Stahl, E. 1920. Zur Physiologie und Biologie der Exkrete. Flora113: 1–132.

    Google Scholar 

  • Stebbins, G. L., Jr. 1940. Studies in the CichorieaeDubyaea andSoroseris, endemics of the sino-himalayan region. Mem. Torrey Bot. Club19: 1–76.

    Google Scholar 

  • Stebbins, R. L., D. H. Dewey andV. E. Shull. 1972. Calcium crystals in apple stem, petiole and fruit tissue. Hort. Sci.7: 492–493.

    CAS  Google Scholar 

  • Steffensen, D. 1958. Chromosome aberrations in calcium-deficientTradescantia produced by irradiation. Nature182: 1750–1751.

    Article  PubMed  CAS  Google Scholar 

  • Steinfink, H., F. G. E. Pautard andH. J. Arnott. 1965. Crystallography of calcium oxalates in plants. Am. J. Bot.52: 613.

    Google Scholar 

  • Steinmann, A. B. 1917. Studien über die Azidität des Zellsaftes beim Rhubarber. Z. Bot.9: 1–59.

    CAS  Google Scholar 

  • Sterling, C. 1964. Crystal structure of weddellite. Science146: 518–519.

    Article  PubMed  CAS  Google Scholar 

  • —. 1965. Crystal structure analysis of weddellite, CaC2O4. (2 + x)H2O. Acta Cryst.18: 917–921.

    Article  CAS  Google Scholar 

  • Stevenson, G. B. 1953. Bacterial symbiosis in some New Zealand plants. Ann. Bot. 17: 343–345.

    Google Scholar 

  • Stumpf, P. K. 1965. Lipid metabolism. Pages 322–345In J. Bonner and J. E. Varner (eds.). Plant biochemistry. Academic Press, New York.

    Google Scholar 

  • Stutz, R. E. andR. H. Burris. 1951. Photosynthesis and metabolism of organic acids in higher plants. Plant Physiol.26: 226–243.

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe, J. F. 1962. Mineral salts absorption in plants. Pergamon Press, Oxford.

    Google Scholar 

  • Tallqvist, H. andI. Väänänen. 1960. Death of a child from oxalic acid poisoning due to eating rhubarb leaves. Ann. Paediatr. Fenn.6: 144.

    PubMed  CAS  Google Scholar 

  • Tavant, H. 1967. Fixation de14CO2 et absorption de glucose-U-14C par des feulles deBegonia semperflorens Link et Otto. Etude des conditions de la genese de l’acide oxalique. Physiol. Vég.5: 57–69.

    CAS  Google Scholar 

  • Thibodeau, P. U. andP. L. Minotti. 1969. The influence of calcium on lettuce tip burn. J. Am. Soc. Hort. Sci.94: 372–376.

    CAS  Google Scholar 

  • Thoday, D. andH. Evans. 1932. Studies in growth and differentiation.III. The distribution of calcium and phosphate in the tissues ofKleinia articulata and some other plants. Ann. Bot.46: 781–806.

    CAS  Google Scholar 

  • Thurston, E. L. 1976. Morphology, fine structure and ontogeny of the stinging emergence ofTragia ramosa andT. saxicola (Euphorbiaceae). Am. J. Bot.63: 710–718.

    Article  Google Scholar 

  • Tilton, V. R. 1978. A developmental and histochemical study of the female reproductive system inOrnithogalum caudatum Ait. using light and electron microscopy. Ph.D. Dissertation, Iowa State University, Ames.

    Google Scholar 

  • -and H. T. Horner, Jr. Calcium oxalate crystals and crystalliferous idioblasts in the carpels ofOrnithogalum caudatum (Liliaceae). Ann. Bot. In press.

  • Tolbert, N. E. 1973. Glycolate biosynthesis. Pages 21–50In B. L. Horecker and E. R. Stadman (eds.). Current topics of cellular regulation. Academic Press, New York.

    Google Scholar 

  • Urbanus, J. F. L. M., H. Van Den Ende andB. Koch. 1978. Calcium oxalate crystals in the wall ofMucor mucedo. Mycologia70: 829–842.

    Article  CAS  Google Scholar 

  • Van Hove, C. andA. S. Craig. 1973. A reinvestigation of bacterial symbiosis inCoprosma, Mysporum, Metrosideros, Leptospermum, andVitex. Ann. Bot.37: 1013–1016.

    Google Scholar 

  • Vaughan, J. G. 1970. The structure and utilization of oil seeds. Chapman and Hall Ltd., London.

    Google Scholar 

  • Vickery, H. B. andM. D. Abrahams. 1950. The metabolism of the organic acids of tobacco leaves.III. J. Biol. Chem.186: 411–416.

    PubMed  CAS  Google Scholar 

  • — andJ. K. Palmer. 1956. The metabolism of the organic acids of tobacco leaves.II. Effect of culture of excised leaves in solutions of glycolate at pH 3 to pH 6. J. Biol. Chem.221: 79–92.

    PubMed  CAS  Google Scholar 

  • Wadleigh, C. H. andJ. W. Shive. 1939. Organic acid content of corn plants as influenced by pH or substrate and form of nitrogen supplied. Am. J. Bot.26: 244–248.

    Article  CAS  Google Scholar 

  • Wagner, G. andF. A Loewus. 1973. The biosynthesis of (+) tartaric acid inPelargonium crispum. Plant Physiol.52: 651–654.

    PubMed  CAS  Google Scholar 

  • ——. 1974. L-ascorbic acid metabolism in Vitaceae. Plant Physiol.54: 784–787.

    PubMed  CAS  Google Scholar 

  • Wallace, T. 1961. The diagnosis of mineral deficiencies in plants. A color atlas guide. H. M. Stationery Office, London.

    Google Scholar 

  • Walter-Levy, L. andR. Strauss. 1962. Sur la répartition des hydrates de l’oxalate de calcium chez les végétaux. Compt. Rend. Acad. Sci. Ser. D254: 1671–1673.

    CAS  Google Scholar 

  • Ward, G., L. H. Harbers andJ. J. Blaha. 1979. Calcium-containing crystals in alfalfa: their fate in cattle. J. Dairy Sci.62: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Wattendorff, J. 1969. Feinbau und Entwicklung der verkorkten Calciumoxalat-Kristalzellen inder Rinde vonLarix decidua Mill. Z. Pflanzenphysiol.60: 307–347.

    CAS  Google Scholar 

  • —. 1976a. Ultrastructure of the suberized styloid crystal cells inAgave leaves. Planta128: 163–165.

    Article  Google Scholar 

  • —. 1976b. A third type of raphide crystal in the Plant Kingdom: Six-sided raphides with laminated sheaths inAgave americana L. Planta130: 303–311.

    Article  Google Scholar 

  • —. 1978. Feinbau und Entwicklung der Calcium oxalat-Kristallzellen mit suberinähnlichen Kristallscheiden in der Rinde und in sekundären Holz vonAcacia Senegal Willd. Protoplasma95: 193–206.

    Article  CAS  Google Scholar 

  • — andH. Schmid. 1973. Prüfung auf perjodat-reaktive Feinstrukturen in den suberinisierten Kristallzel-Wänden der Rinde vonLarix undPicea. Z. Pflanzenphysiol.68: 422–431.

    Google Scholar 

  • Wieneke, J. andF. Führ. 1973. Mikroautoradiographischer Nachweis von45Ca-Kristallablagerungen im Apfelsteilund Fruchtgewebe. Angew. Bot.47: 107–112.

    CAS  Google Scholar 

  • Wolman, M. andD. Goldring. 1962. Histochemical demonstration of calcium oxalate crystals. J. Histochem. Cytochem.10: 505–506.

    CAS  Google Scholar 

  • Wright, K. E. 1939. Transpiration and the absorption of mineral salts. Plant Physiol.14: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. C. andF. A. Loewus. 1975. Metabolic conversion of L-ascorbic acid to oxalic acid in oxalate-accumulating plants. Plant Physiol.56: 283–285.

    PubMed  CAS  Google Scholar 

  • Yara, K. andS. Usami. 1968. Studies on oxalate-decomposing bacteria isolated fromAlocasia plants. Bot. Mag.81: 425–433.

    CAS  Google Scholar 

  • Yasue, T. 1969. Histochemical identification of calcium oxalate. Acta Histochem. Cytochem.2: 83–95.

    CAS  Google Scholar 

  • Zarembski, P. M. andA. Hodgkinson. 1967. Plasma oxalic acid and calcium levels in oxalate poisoning. J. Clin. Pathol.20: 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Zbinovsky, V. andR. H. Burris. 1952. Metabolism of infiltrated organic acids by tobacco leaves. Plant Physiol.27: 240–250.

    Article  PubMed  CAS  Google Scholar 

  • Zeigler, H. 1975. Nature of transported substances. Pages 59–100In M. H. Zimmermann and J. A. Millourn (eds.). Encyl. Plant Physiol. Vol. 1, Transport in plants I. Phloem transport. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Zelitch, I. 1953. Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxylic acid reductase. J. Biol. Chem.201: 719–726.

    PubMed  CAS  Google Scholar 

  • — andS. Ochoa. 1953. Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. Biol. Chem.201: 707–718.

    PubMed  CAS  Google Scholar 

  • Zindler-Frank, E. 1974. Die Differenzierung von Kristallidioblasten im Dunkeln und bei Hemmung der Glykolsaineoxidase. Z. Pflanzenphysiol.73: 313–325.

    CAS  Google Scholar 

  • —. 1975. On the formation of the pattern of crystal idioblasts inCanavalia ensiformis DC. VII. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z. Pflanzenphysiol.77: 80–85.

    CAS  Google Scholar 

  • —. 1976a. Zur Entesteshung und Lokalisation von Kristallidioblasten in der höheren Pflanze. Ber. Deutsch. Bot. Ges.89: 269–275.

    Google Scholar 

  • —. 1976b. Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity—a survey. Z. Pflanzenphysiol.80: 1–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschi, V.R., Horner, H.T. Calcium oxalate crystals in plants. Bot. Rev 46, 361–427 (1980). https://doi.org/10.1007/BF02860532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860532

Keywords

Navigation