Skip to main content
Log in

Intramolecular interactions in nitroamines studied by 1H, 13C, 15N and 17O NMR spectral and quantum chemical methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

1H, 13C, 15N and 17O NMR chemical shifts are used for the characterization of the intramolecular interactions in several nitramines of the Me2N-G-NO2 type. The charge of lone electron pair of the amino group in N,N-dimethylnitramine, N,N-dimethyl-2-nitroethenamine, N,N-dimethyl-p-nitroaniline, 4-nitro-β-dimethylaminostyrene, 4-N,N-dimethylamino-β-nitrostyrene, 4-(N,N-dimethylamino)-4′-nitrobiphenyl, and 4-(N,N-dimethylamino)-4′-nitrostilbene is transferred not only to the nitro oxygens, but also to the vinylene and benzene carbons of the G spacer and to N-methyl carbons as well. Decreased nuclear shielding is found to be qualitatively related to the decreased atomic charge around a nucleus. This finding was further verified and quantified by comparison of the NMR data with those obtained by ab initio quantum chemical calculations. 17O NMR chemical shift changes seem to be more significant when the interacting NMe2 and NO2 groups are separated by a short spacer. On the other hand, 15N NMR chemical shifts suggest that a decrease of the charge at the amino nitrogen is not related to the length of the spacer alone. A lack of the linear dependence between the 17Onitro and 15Namino chemical shifts suggests that the charge lost by the amino nitrogen was only partially gained by the oxygens in the nitro group. The increased shieldings of the aryl carbons in 4-(N,N-dimethylamino)-4′-nitrobiphenyl indicate that atoms of the p,p-biphenylene spacer also gain some charge originating from the amino nitrogen. 3 J H,H spin–spin coupling constant shows that among different vinylene compounds, the charge transfer to the nitro group is practically effective only in N,N-dimethyl-2-nitroethenamine where the bond between the vinylene carbons is significantly of low order by character. The calculated Natural Population Analysis (NPA) data confirms that except the nitro oxygens, other atoms that receive the negative charge lost by NMe2 in the compounds studied are the aryl and N-methyl carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers (Wiley, New York, 1991)

  2. G. Park, Ch. Sup Ra, B. Rae Cho, Amine donors in nonlinear optical molecules: methyl and phenyl substitution effects on the first hyperpolarizability. Bull. Korean Chem. Soc. 24, 1671–1674 (2003)

    Article  CAS  Google Scholar 

  3. H.A. Staab in Einführung in die Theoretische Organishe Chemie; Verlag Chemie, Weinheim, chapter 3, 1962

  4. J.Y. Lee, K.S. Kim, B.J. Mhin, Intramolecular charge transfer of π-conjugated push–pull systems in terms of polarizability and electronegativity. J. Chem. Phys. 115, 9484–9489 (2001)

    Article  CAS  Google Scholar 

  5. J. Stals, The chemistry of aliphatic unconjugated nitramines. II. Intramolecular properties and crystal packing. Aust. J. Chem. 22, 2505–2514 (1969)

    Article  CAS  Google Scholar 

  6. Sz. Roszak A theoretical study of the N,N-dimethylnitramine structure. J. Mol. Struct. Theochem. 304, 269–272 (1994)

  7. M.G. White, R.J. Colton, T.H. Lee, J.W. Rabalais, Electronic structure of N,N-dimethylnitramine and N,N-dimethylnitrosamine from X-ray and UV electron spectroscopy. Chem. Phys. 8, 391–398 (1975)

    Article  CAS  Google Scholar 

  8. B.J. Duke, A theoretical investigation of nitramine structures. J. Mol. Struct. 50, 109–114 (1978)

    Article  CAS  Google Scholar 

  9. R. Gawinecki, B. Stanovnik, A. Valkonen, E. Kolehmainen, B. Ośmiałowski, R. Dobosz, A. Zakrzewska, Effect of vinylene and 1,4-phenylene spacers on efficiency of the ground-state intramolecular charge-transfer in enlarged 4-dimethylamino-1-methylpyridinium cations. Struct. Chem. 20, 655–662, (2009)

    Google Scholar 

  10. B.V. Lopatin, Spectra and interactions of the amino and nitro groups in the molecule of nitramide. Teor. Eksper. Khim. 13, 530–533 (1977) [Theor. Exper. Chem. 13, (1977), 399–402]

  11. M.A. Leiva, R.G.E. Morales, Bridge effect of the C=C, C=N and N=N bonds on the long distance electronic charge transfer of para-substituted stilbenoid compounds. Spectroscopy 14, 259–267 (2000)

    Article  CAS  Google Scholar 

  12. L. Hamdellou, O. Hernandez, J. Meinnel, 4-Dimethylamino-β-nitrostyrene and 4-dimethylamino-β-ethyl-β-nitrostyrene at 100 K. Acta Cryst. C62, o557–o560 (2006)

  13. J.O. Morley, R.M. Morley, A.L. Fitton, Spectroscopic studies on Brooker’s Merocyanine. J. Am. Chem. Soc. 120, 11479–11488 (1998)

    Article  CAS  Google Scholar 

  14. J.O. Morley, R.M. Morley, R. Docherty, M.H. Charlton, Fundamental studies on Brooker’s Merocyanine. J. Am. Chem. Soc. 119, 10192–10202 (1997)

    Article  CAS  Google Scholar 

  15. G.W. Wheland, Resonance theory in organic chemistry (Wiley, New York, 1955)

    Google Scholar 

  16. L. Pauling, The nature of the chemical bond, 3rd edn. (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  17. T.M. Krygowski, J. Marin, Crystallographic studies of intra- and inter-molecular interactions. Crystal and molecular structure of N,N-dimethyl-4-nitro-3,5-xylidine. Structural evidence against the classical through-resonance concept in p-nitroaniline and derivatives. J. Chem. Soc. Perkin Trans. 2, 695–698 (1989)

    Article  Google Scholar 

  18. E. Von Nagi-Felsobuki, R.D. Topson, S. Pollack, R.W. Raft, Theoretical studies of the structures of some mono- and di-substituted benzenes. J. Mol. Struct.Theochem 88, 255–263 (1982)

    Google Scholar 

  19. W.F. Reynolds, P. Dais, D.W. Macintyre, R.D. Topson, S. Marriott, E. von Nagi-Felsobuki, R.W. Raft, Nature of π-electron-transfer effects in organic systems with varying π-electron demand. J. Am. Chem. Soc. 105, 378–384 (1983)

    Article  CAS  Google Scholar 

  20. P.C. Hiberty, G. Ohanessian, Valence-bond description of conjugated molecules. 3. The through-resonance concept in para-substituted nitrobenzenes. J. Am. Chem. Soc. 106, 6963–6968 (1984)

    Article  CAS  Google Scholar 

  21. R. Gawinecki, E. Kolehmainen, R. Dobosz, Structure based evaluation of the resonance interactions and effectiveness of the charge transfer in nitroamines. Struct. Chem. 22, 1379–1383 (2011)

    Article  CAS  Google Scholar 

  22. S. Berger, S. Braun, H.O. Kalinowski, NMR spectroscopy of the non-metallic elements (Wiley, New York, 1997)

    Google Scholar 

  23. E. Breitmaier, Structure elucidation by NMR in organic chemistry: a practical guide Third revised edition (Wiley, Chichester, 2003)

    Google Scholar 

  24. R. Marek, A. Lyčka, 15N NMR spectroscopy in structural analysis. Curr. Org. Chem. 6, 35–66 (2002)

    Google Scholar 

  25. R. Marek, A. Lyčka, E. Kolehmainen, J. Toušek, E. Sievänen, 15N NMR Spectroscopy in structural analysis, an update 2001–2005. Curr. Org. Chem. 11, 1154–1205 (2007)

    Google Scholar 

  26. W.G. Klemperer, 17O-NMR spectroscopy as a structural probe. Angew. Chem. Int. Ed. Engl. 17, 246–254 (1978)

    Article  Google Scholar 

  27. A. Zakrzewska, R. Gawinecki, E. Kolehmainen, B. Ośmiałowski, 13C-NMR based evaluation of the electronic and steric interactions in aromatic amines. Int. J. Mol. Sci. 6, 52–62 (2005)

    Article  CAS  Google Scholar 

  28. G.C. Levy, R.L. Lichter, Nitrogen-15 nuclear magnetic resonance spectroscopy (Wiley, New York, 1979)

    Google Scholar 

  29. G.H. Penner, G.M. Bernard, R.E. Wasylishen, A. Barrett, R.D. Curtis, A solid-state nitrogen 15NMR and ab initio study of nitrobenzenes. J. Org. Chem. 68, 4258–4264 (2003)

    Article  CAS  Google Scholar 

  30. K.B. Lipkowitz, A reassessment of nitrobenzene valence bond structures. J. Am. Chem. Soc. 104, 2647–2648 (1982)

    Article  CAS  Google Scholar 

  31. SDBSWeb. http://riodb01.ibase.aist.go.jp/sdbs/

  32. D.W. Boykin, A.L. Baumstark, P. Balakrishnan, A. Perjéssy, P. Hrnciar, 17O NMR studies on 4- and 4′-substituted chalcones and p-substituted β-nitrostyrenes Spectrochim. Acta. 40A, 887–891 (1984)

    Google Scholar 

  33. D.J. Craik, G.C. Levy, R.T.C. Brownlee, Substituent effects on nitrogen-15 and oxygen-17 chemical shifts in nitrobenzenes: correlations with electron densities. J. Org. Chem. 48, 1601–1606 (1983)

    Article  CAS  Google Scholar 

  34. M.In. Kaupp, M. Kaupp, M. Bühl, V.C. Malkin, (eds) Calculations of NMR and EPR parameters, theory and applications, chap 18 (Wiley-VCH, Weinheim, 2004), pp 293–306

  35. R.M. Silverstein, T.C. Morrill, G.C. Bassler, Spectrometric identification of organic compounds; 5th edn. (Wiley, New York, 2005) p 221

  36. A. Hazell, A. Mukhopadhyay, Structure of a push-pull olefin: trans-N,N-dimethyl-2-nitroethenamine. Acta Cryst. B36, 747–748 (1980)

    Article  CAS  Google Scholar 

  37. S.E. Denmark, B.S. Kesler, YCh. Moon, Inter- and intramolecular [4+2] cycloadditions of nitroalkenes with olefins. 2-Nitrostyrenes. J. Org. Chem. 57, 4912–4924 (1992)

    Article  CAS  Google Scholar 

  38. M.C. Caserio, R.E. Pratt, R.J. Holland, The nature of sulfur bonding in α, β-unsaturated sulfides and sulfonium salts. J. Am. Chem. Soc. 88, 5747–5753 (1966)

    Article  CAS  Google Scholar 

  39. K. Yoshida, T. Koujiri, E. Sakamoto, Y. Kubo, New near infrared absorbing metal complex dyes: synthesis and metallochromic properties of two isomeric ligands, 2-(dimethylamino)naphtho [1,2-g] and [2, 1-g] quinoline-7,12-diones. Bull. Chem. Soc. Jpn. 63, 1748–1752 (1990)

    Article  CAS  Google Scholar 

  40. S.P. Jacober, R.P. Hanzlik, Carbon-13 and oxygen-18 kinetic isotope effects on methanolysis of p-nitrostyrene oxide. J. Am. Chem. Soc. 108, 1594–1597 (1986)

    Article  CAS  Google Scholar 

  41. S. Iyer, G.M. Kulkarni, C. Ramesh, Mizoroki–Heck reaction, catalysis by nitrogen ligand Pd complexes and activation of aryl bromides. Tetrahedron 60, 2163–2172 (2004)

    Article  CAS  Google Scholar 

  42. R. Wang, B. Twamley, J.M. Shreeve, A highly efficient, recyclable catalyst for C–C coupling reactions in ionic liquids: pyrazolyl-functionalized N-heterocyclic carbene complex of palladium(II). J. Org. Chem. 71, 426–429 (2006)

    Article  CAS  Google Scholar 

  43. O.Ya. Borbulevych, R.D. Clark, A. Romero, L. Tan, M.Yu. Antipin, V.N. Nesterov, B.H. Cardelino, C.E. Moore, M. Sanghadasa, T.V. Timofeeva, Experimental and theoretical study of the structure of N,N-dimethyl-4-nitroaniline derivatives as model compounds for non-linear optical organic materials. J. Mol. Struct. 604, 73–86 (2002)

    Google Scholar 

  44. T.W.C. Mak, J. Trotter, The crystal and molecular structure of N,N-dimethyl-p-nitroaniline. Acta Cryst. 18, 68–74 (1965)

    Article  CAS  Google Scholar 

  45. A.A. Tishkov, A. D. Dilman, V,I. Faustov, A.A. Birukov, K.S. Lysenko, P.A. Belyakov, S.L. Ioffe, Yu.A. Strelenko, M.Yu. Antipin, Structure and Stereodynamics of N,N-Bis(silyloxy)enamines. J. Am. Chem. Soc. 124, 11358–11387 (2002)

  46. J.P. Marsh, L. Goodman, A novel solvent effect in the nmr spectra of some N,N-dimethylformamidines. Tetrahedron Lett., pp 683–688 (1967)

  47. I. Ando, G.A. Webb, Theory of NMR parameters (Academic Press, London, 1983)

  48. B. Ośmiałowski, E. Kolehmainen, R. Gawinecki, R. GIAO/DFT calculated chemical shifts of tautomeric species. 2-Phenacylpyridines and (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines. Magn. Reson. Chem. 39, 334–340 (2001)

    Article  Google Scholar 

  49. E. Kolehmainen, A. Zakrzewski, A. Zakrzewska, M. Nissinen, B. Ośmiałowski, R. Gawinecki, Predominance of amino-sulfonyl hydrogen bonding in (Z)-2-benzene-sulfonyl-phenyl-2-(phenylhydrazono)ethanones in crystals and in solution: an experimental NMR and X-ray crystallographic and theoretical ab initio and DFT-GIAO studies. Polish J. Chem. 77, 31–45 (2003)

    Google Scholar 

  50. H. Loghamni-Khouzani, T. Rauckyte, B. Ośmiałowski, R. Gawinecki, E. Kolehmainen, GIAO/DFT 13C NMR chemical shifts of 1,3,4-thiadiazoles. Phosph. Sulf. Silicon 182, 2217–2225 (2007)

    Article  Google Scholar 

  51. A.M. Barfield, P. Fagerness, Density functional theory/GIAO studies of the 13C, 15N, and 1H NMR chemical shifts in aminopyrimidines and aminobenzenes: relationships to electron densities and amine group orientations. J. Am. Chem. Soc. 119, 8699–8711 (1997)

    Article  CAS  Google Scholar 

  52. F. Benington, R.D. Morin, L.C. Clark, Mescaline analogs. V. p-Dialkylamino-β-phenethylamines and 9-(β-aminoethyl)julolidine. J. Org. Chem. 21, 1470–1472 (1956)

    Google Scholar 

  53. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  CAS  Google Scholar 

  54. J.C. Bottaro, C.D. Bedford, R.J. Schmitt, D.F. McMillen, Synthesis of N,N-dimethylnitramine by nitrodephosphorylation of hexamethylphosphoramide. J. Org. Chem. 53, 4140–4141 (1988)

    Article  CAS  Google Scholar 

  55. H. Bredereck, G. Sinchen, R. Wahl, Orthoamide, VIII Über die Umsetzung aktivierter Methylgruppen an substituierten Toluolen und Heterocyclen mit Aminal-tert.-butylester zu Enaminen. Chem. Ber.101, 4048–4056 (1968)

    Google Scholar 

  56. M.G. Vetelino, J.W. Coe, A mild method for the conversion of activated aryl methyl groups to carboxaldehydes via the uncatalyzed periodate cleavage of enamines. Tetrahedron Lett. 35, 219–222 (1994)

    Article  Google Scholar 

  57. D.E. Worrall, L. Cohen, p-Dimethylamino derivatives of nitrostyrene. J. Am. Chem. Soc. 66, 842–842 (1944)

    Google Scholar 

  58. E. Kolehmainen, B. Ośmiałowski, T.M. Krygowski, R. Kauppinen, M. Nissinen, R. Gawinecki, Substituent and temperature controlled tautomerism: multinuclear magnetic resonance, X-ray, and theoretical studies on 2-phenacylquinolines. J. Chem. Soc. Perkin Trans II, 1259–1266 (2000)

    Article  Google Scholar 

  59. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. A Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01, (Gaussian, Inc., Pittsburgh, 2004)

  60. K. Woliński, J.F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 112, 251–8260 (1990)

    Google Scholar 

Download references

Acknowledgments

We are very much indebted to the CI TASK Gdańsk for supply of computer time and providing programs. The authors thank Spec. Lab. Technician Reijo Kauppinen for his help in the NMR experiments. This work was supported by Polish Ministry of Science and Higher Education (Grant No. IP2011 010171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryszard Gawinecki or Hossein Loghmani Khouzani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawinecki, R., Kolehmainen, E., Dobosz, R. et al. Intramolecular interactions in nitroamines studied by 1H, 13C, 15N and 17O NMR spectral and quantum chemical methods. J IRAN CHEM SOC 11, 17–25 (2014). https://doi.org/10.1007/s13738-013-0269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0269-6

Keywords

Navigation